Highly Porous Poly(high internal phase emulsion) Membranes with "Open-Cell" Structure and CO2-Switchable Wettability Used for Controlled Oil/Water Separation

Polymer membranes with switchable wettability have promising applications in smart separation. Hereby, we report highly porous poly(styrene-co-N,N-(diethylamino)ethyl methacrylate) (i.e., poly(St-co-DEA)) membranes with "open-cell" structure and CO2-switchable wettability prepared from wat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 43 vom: 31. Okt., Seite 11936-11944
1. Verfasser: Lei, Lei (VerfasserIn)
Weitere Verfasser: Zhang, Qi, Shi, Shuxian, Zhu, Shiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Polymer membranes with switchable wettability have promising applications in smart separation. Hereby, we report highly porous poly(styrene-co-N,N-(diethylamino)ethyl methacrylate) (i.e., poly(St-co-DEA)) membranes with "open-cell" structure and CO2-switchable wettability prepared from water-in-oil (W/O) high internal phase emulsion (HIPE) templates. The open-cell porous structure facilitates fluid penetration through the membranes. The combination of CO2-switchable functionality and porous microstructure enable the membrane with CO2-switchable wettability from hydrophobic or superoleophilic to hydrophilic or superoleophobic through CO2 treatment in an aqueous system. This type of membrane can be used for gravity-driven CO2-controlled oil/water separation, in which oil selectively penetrates through the membrane and separates from water. After being treated with CO2 switching wettability of the membrane, a reversed separation of water and oil can be achieved. Such a wettability switch is fully reversible, and the membrane could be regenerated through simple removal of CO2 and oil residual through drying. This facile and cost-effective approach represents the development of the first CO2-switchable polyHIPE system, which is promising for smart separation in a large volume
Beschreibung:Date Completed 31.07.2018
Date Revised 31.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b02539