|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM276378512 |
003 |
DE-627 |
005 |
20231225011857.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.7b02231
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0921.xml
|
035 |
|
|
|a (DE-627)NLM276378512
|
035 |
|
|
|a (NLM)28968112
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Seki, Takakazu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Electrochemical Control of Peptide Self-Organization on Atomically Flat Solid Surfaces
|b A Case Study with Graphite
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.05.2018
|
500 |
|
|
|a Date Revised 03.05.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
700 |
1 |
|
|a So, Christopher R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Page, Tamon R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Starkebaum, David
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hayamizu, Yuhei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sarikaya, Mehmet
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 34(2018), 5 vom: 06. Feb., Seite 1819-1826
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2018
|g number:5
|g day:06
|g month:02
|g pages:1819-1826
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.7b02231
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2018
|e 5
|b 06
|c 02
|h 1819-1826
|