Improving satellite-driven PM2.5 models with Moderate Resolution Imaging Spectroradiometer fire counts in the southeastern U.S

Multiple studies have developed surface PM2.5 (particle size less than 2.5 µm in aerodynamic diameter) prediction models using satellite-derived aerosol optical depth as the primary predictor and meteorological and land use variables as secondary variables. To our knowledge, satellite-retrieved fire...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres : JGR. - 1998. - 119(2014), 19 vom: 16. Okt., Seite 11375-11386
1. Verfasser: Hu, Xuefei (VerfasserIn)
Weitere Verfasser: Waller, Lance A, Lyapustin, Alexei, Wang, Yujie, Liu, Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of geophysical research. Atmospheres : JGR
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM27637410X
003 DE-627
005 20250222093431.0
007 cr uuu---uuuuu
008 231225s2014 xx |||||o 00| ||eng c
024 7 |a 10.1002/2014JD021920  |2 doi 
028 5 2 |a pubmed25n0921.xml 
035 |a (DE-627)NLM27637410X 
035 |a (NLM)28967648 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Xuefei  |e verfasserin  |4 aut 
245 1 0 |a Improving satellite-driven PM2.5 models with Moderate Resolution Imaging Spectroradiometer fire counts in the southeastern U.S 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multiple studies have developed surface PM2.5 (particle size less than 2.5 µm in aerodynamic diameter) prediction models using satellite-derived aerosol optical depth as the primary predictor and meteorological and land use variables as secondary variables. To our knowledge, satellite-retrieved fire information has not been used for PM2.5 concentration prediction in statistical models. Fire data could be a useful predictor since fires are significant contributors of PM2.5. In this paper, we examined whether remotely sensed fire count data could improve PM2.5 prediction accuracy in the southeastern U.S. in a spatial statistical model setting. A sensitivity analysis showed that when the radius of the buffer zone centered at each PM2.5 monitoring site reached 75 km, fire count data generally have the greatest predictive power of PM2.5 across the models considered. Cross validation (CV) generated an R2 of 0.69, a mean prediction error of 2.75 µg/m3, and root-mean-square prediction errors (RMSPEs) of 4.29 µg/m3, indicating a good fit between the dependent and predictor variables. A comparison showed that the prediction accuracy was improved more substantially from the nonfire model to the fire model at sites with higher fire counts. With increasing fire counts, CV RMSPE decreased by values up to 1.5 µg/m3, exhibiting a maximum improvement of 13.4% in prediction accuracy. Fire count data were shown to have better performance in southern Georgia and in the spring season due to higher fire occurrence. Our findings indicate that fire count data provide a measurable improvement in PM2.5 concentration estimation, especially in areas and seasons prone to fire events 
650 4 |a Journal Article 
700 1 |a Waller, Lance A  |e verfasserin  |4 aut 
700 1 |a Lyapustin, Alexei  |e verfasserin  |4 aut 
700 1 |a Wang, Yujie  |e verfasserin  |4 aut 
700 1 |a Liu, Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of geophysical research. Atmospheres : JGR  |d 1998  |g 119(2014), 19 vom: 16. Okt., Seite 11375-11386  |w (DE-627)NLM098183494  |x 2169-897X  |7 nnns 
773 1 8 |g volume:119  |g year:2014  |g number:19  |g day:16  |g month:10  |g pages:11375-11386 
856 4 0 |u http://dx.doi.org/10.1002/2014JD021920  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 119  |j 2014  |e 19  |b 16  |c 10  |h 11375-11386