Ghost Numbers

We comment on a paper describing an algorithm for image set classification. Following the general practice in computer vision research, the performance of the algorithm was evaluated on benchmarks in order to support the claim of its advantage over other algorithms in the literature. We have examine...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 10 vom: 01. Okt., Seite 2538-2539
1. Verfasser: Chen, Liang (VerfasserIn)
Weitere Verfasser: Casperson, David, Gao, Lixin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Comment
LEADER 01000naa a22002652 4500
001 NLM276309561
003 DE-627
005 20231225011726.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2757489  |2 doi 
028 5 2 |a pubmed24n0921.xml 
035 |a (DE-627)NLM276309561 
035 |a (NLM)28961104 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Liang  |e verfasserin  |4 aut 
245 1 0 |a Ghost Numbers 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a CommentOn: IEEE Trans Pattern Anal Mach Intell. 2015 Apr;37(4):713-27. - PMID 26353289 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We comment on a paper describing an algorithm for image set classification. Following the general practice in computer vision research, the performance of the algorithm was evaluated on benchmarks in order to support the claim of its advantage over other algorithms in the literature. We have examined the reported data of experiences on two datasets, and found that many numbers are not a possible answer regardless how the random partitions were selected and regardless how the algorithms performed in each partition. Our finding suggests that the experimental results in the paper ("Deep Reconstruction Models for Image Set Classification", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 37, no. 4, pp. 713-727, April 2015) has serious flaws to the extent that all the experimental results should be re-examined 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Comment 
700 1 |a Casperson, David  |e verfasserin  |4 aut 
700 1 |a Gao, Lixin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 10 vom: 01. Okt., Seite 2538-2539  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:10  |g day:01  |g month:10  |g pages:2538-2539 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2757489  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 10  |b 01  |c 10  |h 2538-2539