Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

In this paper, we propose a novel edge preserving and multi-scale contextual neural network for salient object detection. The proposed framework is aiming to address two limits of the existing CNN based methods. First, region-based CNN methods lack sufficient context to accurately locate salient obj...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 27. Jan., Seite 121-134
1. Verfasser: Wang, Xiang (VerfasserIn)
Weitere Verfasser: Ma, Huimin, Chen, Xiaozhi, You, Shaodi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Feature extraction Image edge detection Image segmentation Neural networks Object detection Semantics
LEADER 01000naa a22002652 4500
001 NLM276230094
003 DE-627
005 20231225011531.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2756825  |2 doi 
028 5 2 |a pubmed24n0920.xml 
035 |a (DE-627)NLM276230094 
035 |a (NLM)28952942 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xiang  |e verfasserin  |4 aut 
245 1 0 |a Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a novel edge preserving and multi-scale contextual neural network for salient object detection. The proposed framework is aiming to address two limits of the existing CNN based methods. First, region-based CNN methods lack sufficient context to accurately locate salient object since they deal with each region independently. Second, pixel-based CNN methods suffer from blurry boundaries due to the presence of convolutional and pooling layers. Motivated by these, we first propose an end-to-end edge-preserved neural network based on Fast R-CNN framework (named RegionNet) to efficiently generate saliency map with sharp object boundaries. Later, to further improve it, multi-scale spatial context is attached to RegionNet to consider the relationship between regions and the global scenes. Furthermore, our method can be generally applied to RGB-D saliency detection by depth refinement. The proposed framework achieves both clear detection boundary and multi-scale contextual robustness simultaneously for the first time, and thus achieves an optimized performance. Experiments on six RGB and two RGB-D benchmark datasets demonstrate that the proposed method achieves state-of-the-art performance.In this paper, we propose a novel edge preserving and multi-scale contextual neural network for salient object detection. The proposed framework is aiming to address two limits of the existing CNN based methods. First, region-based CNN methods lack sufficient context to accurately locate salient object since they deal with each region independently. Second, pixel-based CNN methods suffer from blurry boundaries due to the presence of convolutional and pooling layers. Motivated by these, we first propose an end-to-end edge-preserved neural network based on Fast R-CNN framework (named RegionNet) to efficiently generate saliency map with sharp object boundaries. Later, to further improve it, multi-scale spatial context is attached to RegionNet to consider the relationship between regions and the global scenes. Furthermore, our method can be generally applied to RGB-D saliency detection by depth refinement. The proposed framework achieves both clear detection boundary and multi-scale contextual robustness simultaneously for the first time, and thus achieves an optimized performance. Experiments on six RGB and two RGB-D benchmark datasets demonstrate that the proposed method achieves state-of-the-art performance 
650 4 |a Journal Article 
650 4 |a Feature extraction 
650 4 |a Image edge detection 
650 4 |a Image segmentation 
650 4 |a Neural networks 
650 4 |a Object detection 
650 4 |a Semantics 
700 1 |a Ma, Huimin  |e verfasserin  |4 aut 
700 1 |a Chen, Xiaozhi  |e verfasserin  |4 aut 
700 1 |a You, Shaodi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 1 vom: 27. Jan., Seite 121-134  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:1  |g day:27  |g month:01  |g pages:121-134 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2756825  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 1  |b 27  |c 01  |h 121-134