Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions

In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 10 vom: 27. Okt., Seite 2355-2373
1. Verfasser: Hu, Weiming (VerfasserIn)
Weitere Verfasser: Tian, Guodong, Kang, Yongxin, Yuan, Chunfeng, Maybank, Stephen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM276229932
003 DE-627
005 20231225011530.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2756039  |2 doi 
028 5 2 |a pubmed24n0920.xml 
035 |a (DE-627)NLM276229932 
035 |a (NLM)28952936 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Weiming  |e verfasserin  |4 aut 
245 1 0 |a Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. The number of HMMs and the number of topics are both automatically determined. The sticky prior avoids redundant states and makes our HDP-HMM more effective to model multimodal observations. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. The sources and sinks in the scene are learnt by clustering endpoints (origins and destinations) of trajectories. The semantic motion regions are learnt using the points in trajectories. On combining the learnt sources and sinks, the learnt semantic motion regions, and the learnt sequence of atomic activities, the action represented by a trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tian, Guodong  |e verfasserin  |4 aut 
700 1 |a Kang, Yongxin  |e verfasserin  |4 aut 
700 1 |a Yuan, Chunfeng  |e verfasserin  |4 aut 
700 1 |a Maybank, Stephen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 10 vom: 27. Okt., Seite 2355-2373  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:10  |g day:27  |g month:10  |g pages:2355-2373 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2756039  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 10  |b 27  |c 10  |h 2355-2373