Consensus Regularized Multi-View Outlier Detection

Identifying different types of data outliers with abnormal behaviors in multi-view data setting is challenging due to the complicated data distributions across different views. Conventional approaches achieve this by learning a new latent feature representation with the pairwise constraint on differ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 01. Jan., Seite 236-248
1. Verfasser: Handong Zhao (VerfasserIn)
Weitere Verfasser: Hongfu Liu, Zhengming Ding, Yun Fu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM276157923
003 DE-627
005 20250222084444.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2754942  |2 doi 
028 5 2 |a pubmed25n0920.xml 
035 |a (DE-627)NLM276157923 
035 |a (NLM)28945594 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Handong Zhao  |e verfasserin  |4 aut 
245 1 0 |a Consensus Regularized Multi-View Outlier Detection 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Identifying different types of data outliers with abnormal behaviors in multi-view data setting is challenging due to the complicated data distributions across different views. Conventional approaches achieve this by learning a new latent feature representation with the pairwise constraint on different view data. In this paper, we argue that the existing methods are expensive in generalizing their models from two-view data to three-view (or more) data, in terms of the number of introduced variables and detection performance. To address this, we propose a novel multi-view outlier detection method with consensus regularization on the latent representations. Specifically, we explicitly characterize each kind of outliers by the intrinsic cluster assignment labels and sample-specific errors. Moreover, we make a thorough discussion about the proposed consensus-regularization and the pairwise-regularization. Correspondingly, an optimization solution based on augmented Lagrangian multiplier method is proposed and derived in details. In the experiments, we evaluate our method on five well-known machine learning data sets with different outlier settings. Further, to show its effectiveness in real-world computer vision scenario, we tailor our proposed model to saliency detection and face reconstruction applications. The extensive results of both standard multi-view outlier detection task and the extended computer vision tasks demonstrate the effectiveness of our proposed method 
650 4 |a Journal Article 
700 1 |a Hongfu Liu  |e verfasserin  |4 aut 
700 1 |a Zhengming Ding  |e verfasserin  |4 aut 
700 1 |a Yun Fu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 1 vom: 01. Jan., Seite 236-248  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:1  |g day:01  |g month:01  |g pages:236-248 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2754942  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 1  |b 01  |c 01  |h 236-248