Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner

© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 217(2018), 1 vom: 22. Jan., Seite 290-304
1. Verfasser: Lv, Shuo (VerfasserIn)
Weitere Verfasser: Zhang, Yonghong, Li, Chen, Liu, Zhijun, Yang, Nan, Pan, Lixia, Wu, Jinbin, Wang, Jiajing, Yang, Jingwei, Lv, Yanting, Zhang, Yutao, Jiang, Wenqian, She, Xiaoping, Wang, Guodong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Arabidopsis thaliana abscisic acid (ABA) hydrogen peroxide (H2O2) nitric oxide (NO) stomata strigolactone Arabidopsis Proteins Carrier Proteins DWARF14 protein, Arabidopsis mehr... Lactones MAX2 protein, Arabidopsis Membrane Proteins Plant Growth Regulators Receptors, Cell Surface SLAC1 protein, Arabidopsis Nitric Oxide 31C4KY9ESH Abscisic Acid 72S9A8J5GW strigol 7I81Q4NS29 Hydrogen Peroxide BBX060AN9V
LEADER 01000naa a22002652 4500
001 NLM276104609
003 DE-627
005 20231225011232.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.14813  |2 doi 
028 5 2 |a pubmed24n0920.xml 
035 |a (DE-627)NLM276104609 
035 |a (NLM)28940201 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lv, Shuo  |e verfasserin  |4 aut 
245 1 0 |a Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.07.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. 
520 |a Accumulating data indicate that strigolactones (SLs) are implicated in the response to environmental stress, implying a potential effect of SLs on stomatal response and thus stress acclimatization. In this study, we investigated the molecular mechanism underlying the effect of SLs on stomatal response and their interrelation with abscisic acid (ABA) signaling. The impact of SLs on the stomatal response was investigated by conducting SL-feeding experiments and by analyzing SL-related mutants. The involvement of endogenous ABA and ABA-signaling components in SL-mediated stomatal closure was physiologically evaluated using genetic mutants. Pharmacological and genetic approaches were employed to examine hydrogen peroxide (H2 O2 ) and nitric oxide (NO) production. SL-related mutants exhibited larger stomatal apertures, while exogenous SLs were able to induce stomatal closure and rescue the more widely opening stomata of SL-deficient mutants. The SL-biosynthetic genes were induced by abiotic stress in shoot tissues. Disruption of ABA-biosynthetic genes, as well as genes that function in guard cell ABA signaling, resulted in no impairment in SL-mediated stomatal response. However, disruption of MORE AXILLARY GROWTH2 (MAX2), DWARF14 (D14), and the anion channel gene SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) impaired SL-triggered stomatal closure. SLs stimulated a marked increase in H2 O2 and NO contents, which is required for stomatal closure. Our results suggest that SLs play a prominent role, together with H2 O2 /NO production and SLAC1 activation, in inducing stomatal closure in an ABA-independent mechanism 
650 4 |a Journal Article 
650 4 |a Arabidopsis thaliana 
650 4 |a abscisic acid (ABA) 
650 4 |a hydrogen peroxide (H2O2) 
650 4 |a nitric oxide (NO) 
650 4 |a stomata 
650 4 |a strigolactone 
650 7 |a Arabidopsis Proteins  |2 NLM 
650 7 |a Carrier Proteins  |2 NLM 
650 7 |a DWARF14 protein, Arabidopsis  |2 NLM 
650 7 |a Lactones  |2 NLM 
650 7 |a MAX2 protein, Arabidopsis  |2 NLM 
650 7 |a Membrane Proteins  |2 NLM 
650 7 |a Plant Growth Regulators  |2 NLM 
650 7 |a Receptors, Cell Surface  |2 NLM 
650 7 |a SLAC1 protein, Arabidopsis  |2 NLM 
650 7 |a Nitric Oxide  |2 NLM 
650 7 |a 31C4KY9ESH  |2 NLM 
650 7 |a Abscisic Acid  |2 NLM 
650 7 |a 72S9A8J5GW  |2 NLM 
650 7 |a strigol  |2 NLM 
650 7 |a 7I81Q4NS29  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
700 1 |a Zhang, Yonghong  |e verfasserin  |4 aut 
700 1 |a Li, Chen  |e verfasserin  |4 aut 
700 1 |a Liu, Zhijun  |e verfasserin  |4 aut 
700 1 |a Yang, Nan  |e verfasserin  |4 aut 
700 1 |a Pan, Lixia  |e verfasserin  |4 aut 
700 1 |a Wu, Jinbin  |e verfasserin  |4 aut 
700 1 |a Wang, Jiajing  |e verfasserin  |4 aut 
700 1 |a Yang, Jingwei  |e verfasserin  |4 aut 
700 1 |a Lv, Yanting  |e verfasserin  |4 aut 
700 1 |a Zhang, Yutao  |e verfasserin  |4 aut 
700 1 |a Jiang, Wenqian  |e verfasserin  |4 aut 
700 1 |a She, Xiaoping  |e verfasserin  |4 aut 
700 1 |a Wang, Guodong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 217(2018), 1 vom: 22. Jan., Seite 290-304  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:217  |g year:2018  |g number:1  |g day:22  |g month:01  |g pages:290-304 
856 4 0 |u http://dx.doi.org/10.1111/nph.14813  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 217  |j 2018  |e 1  |b 22  |c 01  |h 290-304