Filtered Backprojection Algorithm Can Outperform Iterative Maximum Likelihood Expectation-Maximization Algorithm

The iterative maximum-likelihood expectation-maximization (ML-EM) algorithm is an excellent algorithm for image reconstruction and usually provides better images than the filtered backprojection (FBP) algorithm. However, a windowed FBP algorithm can outperform the ML-EM in certain occasions, when th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology. - 1990. - 22(2012), 2 vom: 15. Juni, Seite 114-120
1. Verfasser: Zeng, Gengsheng L (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:International journal of imaging systems and technology
Schlagworte:Journal Article ML-EM algorithm Poisson noise filtered backprojection algorithm image reconstruction
LEADER 01000naa a22002652 4500
001 NLM27602382X
003 DE-627
005 20231225011038.0
007 cr uuu---uuuuu
008 231225s2012 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22011  |2 doi 
028 5 2 |a pubmed24n0920.xml 
035 |a (DE-627)NLM27602382X 
035 |a (NLM)28931971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zeng, Gengsheng L  |e verfasserin  |4 aut 
245 1 0 |a Filtered Backprojection Algorithm Can Outperform Iterative Maximum Likelihood Expectation-Maximization Algorithm 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The iterative maximum-likelihood expectation-maximization (ML-EM) algorithm is an excellent algorithm for image reconstruction and usually provides better images than the filtered backprojection (FBP) algorithm. However, a windowed FBP algorithm can outperform the ML-EM in certain occasions, when the least-squared difference from the true image, that is, the least-squared error (LSE), is used as the comparison criterion. Computer simulations were carried out for the two algorithms. For a given data set the best reconstruction (compared to the true image) from each algorithm was first obtained, and the two reconstructions are compared. The stopping iteration number of the ML-EM algorithm and the parameters of the windowed FBP algorithm were determined, so that they produced an image that was closest to the true image. However, to use the LSE criterion to compare algorithms, one must know the true image. How to select the optimal parameters when the true image is unknown is a practical open problem. For noisy Poisson projections, computer simulation results indicate that the ML-EM images are better than the regular FBP images, and the windowed FBP algorithm images are better than the ML-EM images. For the noiseless projections, the FBP algorithms outperform the ML-EM algorithm. The computer simulations reveal that the windowed FBP algorithm can provide a reconstruction that is closer to the true image than the ML-EM algorithm 
650 4 |a Journal Article 
650 4 |a ML-EM algorithm 
650 4 |a Poisson noise 
650 4 |a filtered backprojection algorithm 
650 4 |a image reconstruction 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 22(2012), 2 vom: 15. Juni, Seite 114-120  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnns 
773 1 8 |g volume:22  |g year:2012  |g number:2  |g day:15  |g month:06  |g pages:114-120 
856 4 0 |u http://dx.doi.org/10.1002/ima.22011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2012  |e 2  |b 15  |c 06  |h 114-120