|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM275955915 |
003 |
DE-627 |
005 |
20231225010859.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.24911
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0919.xml
|
035 |
|
|
|a (DE-627)NLM275955915
|
035 |
|
|
|a (NLM)28925001
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Šebesta, Filip
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer
|b Quantum mechanical study
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 Wiley Periodicals, Inc.
|
520 |
|
|
|a This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+ , Zn2+ , and Hg2+ . Our results point out that this reaction corresponds to a two-stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to abstract the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a DFT
|
650 |
|
4 |
|a chemical potential
|
650 |
|
4 |
|a proton transfer
|
650 |
|
4 |
|a reaction coordinate
|
650 |
|
4 |
|a thymine
|
700 |
1 |
|
|a Brela, Mateusz Z
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Diaz, Silvia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Miranda, Sebastian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Murray, Jane S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gutiérrez-Oliva, Soledad
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Toro-Labbé, Alejandro
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Michalak, Artur
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Burda, Jaroslav V
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 38(2017), 31 vom: 05. Dez., Seite 2680-2692
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2017
|g number:31
|g day:05
|g month:12
|g pages:2680-2692
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.24911
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2017
|e 31
|b 05
|c 12
|h 2680-2692
|