PURE-LET Image Deconvolution

We propose a non-iterative image deconvolution algorithm for data corrupted by Poisson or mixed Poisson-Gaussian noise. Many applications involve such a problem, ranging from astronomical to biological imaging. We parameterize the deconvolution process as a linear combination of elementary functions...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 18. Jan., Seite 92-105
1. Verfasser: Li, Jizhou (VerfasserIn)
Weitere Verfasser: Luisier, Florian, Blu, Thierry
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article AWGN Deconvolution Image restoration Mathematical model Microscopy Noise measurement
LEADER 01000naa a22002652 4500
001 NLM275927512
003 DE-627
005 20231225010819.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2753404  |2 doi 
028 5 2 |a pubmed24n0919.xml 
035 |a (DE-627)NLM275927512 
035 |a (NLM)28922119 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jizhou  |e verfasserin  |4 aut 
245 1 0 |a PURE-LET Image Deconvolution 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a non-iterative image deconvolution algorithm for data corrupted by Poisson or mixed Poisson-Gaussian noise. Many applications involve such a problem, ranging from astronomical to biological imaging. We parameterize the deconvolution process as a linear combination of elementary functions, termed as linear expansion of thresholds. This parameterization is then optimized by minimizing a robust estimate of the true mean squared error, the Poisson unbiased risk estimate. Each elementary function consists of a Wiener filtering followed by a pointwise thresholding of undecimated Haar wavelet coefficients. In contrast to existing approaches, the proposed algorithm merely amounts to solving a linear system of equations, which has a fast and exact solution. Simulation experiments over different types of convolution kernels and various noise levels indicate that the proposed method outperforms the state-of-the-art techniques, in terms of both restoration quality and computational complexity. Finally, we present some results on real confocal fluorescence microscopy images and demonstrate the potential applicability of the proposed method for improving the quality of these images.We propose a non-iterative image deconvolution algorithm for data corrupted by Poisson or mixed Poisson-Gaussian noise. Many applications involve such a problem, ranging from astronomical to biological imaging. We parameterize the deconvolution process as a linear combination of elementary functions, termed as linear expansion of thresholds. This parameterization is then optimized by minimizing a robust estimate of the true mean squared error, the Poisson unbiased risk estimate. Each elementary function consists of a Wiener filtering followed by a pointwise thresholding of undecimated Haar wavelet coefficients. In contrast to existing approaches, the proposed algorithm merely amounts to solving a linear system of equations, which has a fast and exact solution. Simulation experiments over different types of convolution kernels and various noise levels indicate that the proposed method outperforms the state-of-the-art techniques, in terms of both restoration quality and computational complexity. Finally, we present some results on real confocal fluorescence microscopy images and demonstrate the potential applicability of the proposed method for improving the quality of these images 
650 4 |a Journal Article 
650 4 |a AWGN 
650 4 |a Deconvolution 
650 4 |a Image restoration 
650 4 |a Mathematical model 
650 4 |a Microscopy 
650 4 |a Noise measurement 
700 1 |a Luisier, Florian  |e verfasserin  |4 aut 
700 1 |a Blu, Thierry  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 1 vom: 18. Jan., Seite 92-105  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:1  |g day:18  |g month:01  |g pages:92-105 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2753404  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 1  |b 18  |c 01  |h 92-105