Motion Estimation in Echocardiography Using Sparse Representation and Dictionary Learning

This paper introduces a new method for cardiac motion estimation in 2-D ultrasound images. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a cl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 18. Jan., Seite 64-77
1. Verfasser: Ouzir, Nora (VerfasserIn)
Weitere Verfasser: Basarab, Adrian, Liebgott, Herve, Harbaoui, Brahim, Tourneret, Jean-Yves
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Dictionaries Machine learning Matching pursuit algorithms Motion estimation Motion measurement Two dimensional displays Ultrasonic imaging
LEADER 01000naa a22002652 4500
001 NLM275927482
003 DE-627
005 20231225010819.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2753406  |2 doi 
028 5 2 |a pubmed24n0919.xml 
035 |a (DE-627)NLM275927482 
035 |a (NLM)28922120 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ouzir, Nora  |e verfasserin  |4 aut 
245 1 0 |a Motion Estimation in Echocardiography Using Sparse Representation and Dictionary Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces a new method for cardiac motion estimation in 2-D ultrasound images. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step. The proposed method is evaluated on one data set with available ground-truth, including four sequences of highly realistic simulations. The approach is also validated on both healthy and pathological sequences of in vivo data. We evaluate the method in terms of motion estimation accuracy and strain errors and compare the performance with state-of-the-art algorithms. The results show that the proposed method gives competitive results for the considered data. Furthermore, the in vivo strain analysis demonstrates that meaningful clinical interpretation can be obtained from the estimated motion vectors.This paper introduces a new method for cardiac motion estimation in 2-D ultrasound images. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step. The proposed method is evaluated on one data set with available ground-truth, including four sequences of highly realistic simulations. The approach is also validated on both healthy and pathological sequences of in vivo data. We evaluate the method in terms of motion estimation accuracy and strain errors and compare the performance with state-of-the-art algorithms. The results show that the proposed method gives competitive results for the considered data. Furthermore, the in vivo strain analysis demonstrates that meaningful clinical interpretation can be obtained from the estimated motion vectors 
650 4 |a Journal Article 
650 4 |a Dictionaries 
650 4 |a Machine learning 
650 4 |a Matching pursuit algorithms 
650 4 |a Motion estimation 
650 4 |a Motion measurement 
650 4 |a Two dimensional displays 
650 4 |a Ultrasonic imaging 
700 1 |a Basarab, Adrian  |e verfasserin  |4 aut 
700 1 |a Liebgott, Herve  |e verfasserin  |4 aut 
700 1 |a Harbaoui, Brahim  |e verfasserin  |4 aut 
700 1 |a Tourneret, Jean-Yves  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 1 vom: 18. Jan., Seite 64-77  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:1  |g day:18  |g month:01  |g pages:64-77 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2753406  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 1  |b 18  |c 01  |h 64-77