A Visual Analytics Framework for Identifying Topic Drivers in Media Events

Media data has been the subject of large scale analysis with applications of text mining being used to provide overviews of media themes and information flows. Such information extracted from media articles has also shown its contextual value of being integrated with other data, such as criminal rec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 24(2018), 9 vom: 06. Sept., Seite 2501-2515
1. Verfasser: Lu, Yafeng (VerfasserIn)
Weitere Verfasser: Wang, Hong, Landis, Steven, Maciejewski, Ross
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM275915514
003 DE-627
005 20250222074910.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2752166  |2 doi 
028 5 2 |a pubmed25n0919.xml 
035 |a (DE-627)NLM275915514 
035 |a (NLM)28920902 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Yafeng  |e verfasserin  |4 aut 
245 1 2 |a A Visual Analytics Framework for Identifying Topic Drivers in Media Events 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Media data has been the subject of large scale analysis with applications of text mining being used to provide overviews of media themes and information flows. Such information extracted from media articles has also shown its contextual value of being integrated with other data, such as criminal records and stock market pricing. In this work, we explore linking textual media data with curated secondary textual data sources through user-guided semantic lexical matching for identifying relationships and data links. In this manner, critical information can be identified and used to annotate media timelines in order to provide a more detailed overview of events that may be driving media topics and frames. These linked events are further analyzed through an application of causality modeling to model temporal drivers between the data series. Such causal links are then annotated through automatic entity extraction which enables the analyst to explore persons, locations, and organizations that may be pertinent to the media topic of interest. To demonstrate the proposed framework, two media datasets and an armed conflict event dataset are explored 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wang, Hong  |e verfasserin  |4 aut 
700 1 |a Landis, Steven  |e verfasserin  |4 aut 
700 1 |a Maciejewski, Ross  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 24(2018), 9 vom: 06. Sept., Seite 2501-2515  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:9  |g day:06  |g month:09  |g pages:2501-2515 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2752166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 9  |b 06  |c 09  |h 2501-2515