Thermodynamic Route to Efficient Prediction of Gas Diffusivity in Nanoporous Materials

We report an efficient computational procedure for rapid and accurate prediction of the self-diffusivity of gas molecules in nanoporous materials by implementing the transition state theory for intercage hopping at infinite dilution with the string method in conjunction with the excess-entropy scali...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 42 vom: 24. Okt., Seite 11797-11803
1. Verfasser: Tian, Yun (VerfasserIn)
Weitere Verfasser: Xu, Xiaofei, Wu, Jianzhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM275864200
003 DE-627
005 20231225010648.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.7b02428  |2 doi 
028 5 2 |a pubmed24n0919.xml 
035 |a (DE-627)NLM275864200 
035 |a (NLM)28915726 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Yun  |e verfasserin  |4 aut 
245 1 0 |a Thermodynamic Route to Efficient Prediction of Gas Diffusivity in Nanoporous Materials 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2018 
500 |a Date Revised 31.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We report an efficient computational procedure for rapid and accurate prediction of the self-diffusivity of gas molecules in nanoporous materials by implementing the transition state theory for intercage hopping at infinite dilution with the string method in conjunction with the excess-entropy scaling for predicting gas diffusion coefficients at finite loadings. The theoretical procedure has been calibrated with molecular dynamics simulations for the diffusion coefficients of methane and hydrogen gases in representative nanoporous materials including metal organic frameworks and zeolites. Combined with the classical density functional theory for calculating the excess entropy of gas molecules in micropores, the theoretical procedure enables efficient computation of both thermodynamic and transport properties important for design and screening of nanostructured materials for gas storage and separation 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Xu, Xiaofei  |e verfasserin  |4 aut 
700 1 |a Wu, Jianzhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 33(2017), 42 vom: 24. Okt., Seite 11797-11803  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:33  |g year:2017  |g number:42  |g day:24  |g month:10  |g pages:11797-11803 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.7b02428  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 33  |j 2017  |e 42  |b 24  |c 10  |h 11797-11803