Effective partial nitrification of ammonia in a fluidized bed bioreactor
A lab-scale fluidized bed bioreactor with high-density polyethylene as biofilm carrier media was operated to study partial nitrification (PN) performance with high ammonia concentrations. The system was run at nitrogen loading rates (NLRs) from 1.2 to 4.8 kg N/(m3 d) with empty bed contact time of 2...
Veröffentlicht in: | Environmental technology. - 1993. - 40(2019), 1 vom: 15. Jan., Seite 94-101 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Partial nitrification biological nitrogen removal fluidized bed bioreactor free ammonia Nitrites Ammonia 7664-41-7 Nitrogen N762921K75 |
Zusammenfassung: | A lab-scale fluidized bed bioreactor with high-density polyethylene as biofilm carrier media was operated to study partial nitrification (PN) performance with high ammonia concentrations. The system was run at nitrogen loading rates (NLRs) from 1.2 to 4.8 kg N/(m3 d) with empty bed contact time of 2.0 and 2.7 h and four different influent ammonia concentrations of 100, 200, 300 and 400 mg/L. Dissolved oxygen concentration and temperature were maintained around 1.3 mg/L and 35°C, respectively. Stable PN was successfully achieved during the whole period with low effluent NO3-N concentration at less than 15 mg/L, due to effective suppression of nitrite-oxidizing bacteria activity at high concentrations of free ammonia (5.3-27.3 mg N/L) and low alkalinity-to-ammonia ratio. At the NLR of 3.6 kg N/(m3 d), NH4-N conversion and NO2-N accumulation ratios were 57.8% and 53.9%, respectively, which could be further used in the anaerobic ammonium oxidation process (ANAMMOX) as the effluent NO2-N/NH4-N ratio was 1.27 |
---|---|
Beschreibung: | Date Completed 09.09.2019 Date Revised 09.09.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2017.1380710 |