Deep Edge Guided Recurrent Residual Learning for Image Super-Resolution

In this paper, we consider the image super-resolution (SR) problem. The main challenge of image SR is to recover high-frequency details of a low-resolution (LR) image that are important for human perception. To address this essentially ill-posed problem, we introduce a Deep Edge Guided REcurrent rEs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 01. Dez., Seite 5895-5907
1. Verfasser: Wenhan Yang (VerfasserIn)
Weitere Verfasser: Jiashi Feng, Jianchao Yang, Fang Zhao, Jiaying Liu, Zongming Guo, Shuicheng Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM27581498X
003 DE-627
005 20231225010538.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2750403  |2 doi 
028 5 2 |a pubmed24n0919.xml 
035 |a (DE-627)NLM27581498X 
035 |a (NLM)28910762 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wenhan Yang  |e verfasserin  |4 aut 
245 1 0 |a Deep Edge Guided Recurrent Residual Learning for Image Super-Resolution 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we consider the image super-resolution (SR) problem. The main challenge of image SR is to recover high-frequency details of a low-resolution (LR) image that are important for human perception. To address this essentially ill-posed problem, we introduce a Deep Edge Guided REcurrent rEsidual (DEGREE) network to progressively recover the high-frequency details. Different from most of the existing methods that aim at predicting high-resolution (HR) images directly, the DEGREE investigates an alternative route to recover the difference between a pair of LR and HR images by recurrent residual learning. DEGREE further augments the SR process with edge-preserving capability, namely the LR image and its edge map can jointly infer the sharp edge details of the HR image during the recurrent recovery process. To speed up its training convergence rate, by-pass connections across the multiple layers of DEGREE are constructed. In addition, we offer an understanding on DEGREE from the view-point of sub-band frequency decomposition on image signal and experimentally demonstrate how the DEGREE can recover different frequency bands separately. Extensive experiments on three benchmark data sets clearly demonstrate the superiority of DEGREE over the well-established baselines and DEGREE also provides new state-of-the-arts on these data sets. We also present addition experiments for JPEG artifacts reduction to demonstrate the good generality and flexibility of our proposed DEGREE network to handle other image processing tasks 
650 4 |a Journal Article 
700 1 |a Jiashi Feng  |e verfasserin  |4 aut 
700 1 |a Jianchao Yang  |e verfasserin  |4 aut 
700 1 |a Fang Zhao  |e verfasserin  |4 aut 
700 1 |a Jiaying Liu  |e verfasserin  |4 aut 
700 1 |a Zongming Guo  |e verfasserin  |4 aut 
700 1 |a Shuicheng Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 12 vom: 01. Dez., Seite 5895-5907  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:12  |g day:01  |g month:12  |g pages:5895-5907 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2750403  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 12  |b 01  |c 12  |h 5895-5907