Learning Building Extraction in Aerial Scenes with Convolutional Networks

Extracting buildings from aerial scene images is an important task with many applications. However, this task is highly difficult to automate due to extremely large variations of building appearances, and still heavily relies on manual work. To attack this problem, we design a deep convolutional net...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 11 vom: 01. Nov., Seite 2793-2798
1. Verfasser: Yuan, Jiangye (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM275814939
003 DE-627
005 20250222072458.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2750680  |2 doi 
028 5 2 |a pubmed25n0919.xml 
035 |a (DE-627)NLM275814939 
035 |a (NLM)28910757 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Jiangye  |e verfasserin  |4 aut 
245 1 0 |a Learning Building Extraction in Aerial Scenes with Convolutional Networks 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Extracting buildings from aerial scene images is an important task with many applications. However, this task is highly difficult to automate due to extremely large variations of building appearances, and still heavily relies on manual work. To attack this problem, we design a deep convolutional network with a simple structure that integrates activation from multiple layers for pixel-wise prediction, and introduce the signed distance function of building boundaries to represent output, which has an enhanced representation power. To train the network, we leverage abundant building footprint data from geographic information systems (GIS) to generate large amounts of labeled data. The trained model achieves a superior performance on datasets that are significantly larger and more complex than those used in prior work, demonstrating that the proposed method provides a promising and scalable solution for automating this labor-intensive task 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 11 vom: 01. Nov., Seite 2793-2798  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:11  |g day:01  |g month:11  |g pages:2793-2798 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2750680  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 11  |b 01  |c 11  |h 2793-2798