Synthesis of pH-Responsive Inorganic Janus Nanoparticles and Experimental Investigation of the Stability of Their Pickering Emulsions

Pickering emulsions exhibit outstanding stability, especially those prepared with Janus particles, whose desorption energy is expected to be up to 3-fold greater than emulsions of homogeneous particles from theoretical calculations. To the best of our knowledge, however, there remains no experimenta...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 39 vom: 03. Okt., Seite 10283-10290
1. Verfasser: Xue, Wei (VerfasserIn)
Weitere Verfasser: Yang, Hengquan, Du, Zhiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Pickering emulsions exhibit outstanding stability, especially those prepared with Janus particles, whose desorption energy is expected to be up to 3-fold greater than emulsions of homogeneous particles from theoretical calculations. To the best of our knowledge, however, there remains no experimental proof of this behavior in practice. In this study, inorganic Janus nanoparticles were fabricated by regioselective modification of the separate side of SiO2 nanoparticles with a judiciously selected mixture of trimethoxysilylpropyldiethylenetriamine and n-octyltrimethoxysilane. Janus nanoparticles demonstrated excellent interfacial activity, forming Pickering emulsions with oil phases at oil-water interfacial tensions ranging from 6.6-52.8 mN m-1. Furthermore, as the interface of the Janus nanoparticles was regionally functionalized with -NH2 groups, phase inversion could be realized by tuning pH. This is the first example for the Pickering emulsions stabilized with inorganic Janus particles. Importantly, based on the results of centrifugation experiment, the desorption energy of Janus nanoparticles at the interface was 3.2 times larger than that of homogeneous nanoparticles, which is in accordance with the result from theoretical calculations. These experimental results will substantially enrich our understanding of Janus nanoparticle Pickering emulsions and their interfacial assembly behavior
Beschreibung:Date Completed 31.07.2018
Date Revised 31.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b02174