ConceptVector : Text Visual Analytics via Interactive Lexicon Building Using Word Embedding

Central to many text analysis methods is the notion of a concept: a set of semantically related keywords characterizing a specific object, phenomenon, or theme. Advances in word embedding allow building a concept from a small set of seed terms. However, naive application of such techniques may resul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 24(2018), 1 vom: 07. Jan., Seite 361-370
1. Verfasser: Park, Deokgun (VerfasserIn)
Weitere Verfasser: Kim, Seungyeon, Lee, Jurim, Choo, Jaegul, Diakopoulos, Nicholas, Elmqvist, Niklas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM275517144
003 DE-627
005 20231225005845.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2744478  |2 doi 
028 5 2 |a pubmed24n0918.xml 
035 |a (DE-627)NLM275517144 
035 |a (NLM)28880180 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Deokgun  |e verfasserin  |4 aut 
245 1 0 |a ConceptVector  |b Text Visual Analytics via Interactive Lexicon Building Using Word Embedding 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.04.2019 
500 |a Date Revised 08.04.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Central to many text analysis methods is the notion of a concept: a set of semantically related keywords characterizing a specific object, phenomenon, or theme. Advances in word embedding allow building a concept from a small set of seed terms. However, naive application of such techniques may result in false positive errors because of the polysemy of natural language. To mitigate this problem, we present a visual analytics system called ConceptVector that guides a user in building such concepts and then using them to analyze documents. Document-analysis case studies with real-world datasets demonstrate the fine-grained analysis provided by ConceptVector. To support the elaborate modeling of concepts, we introduce a bipolar concept model and support for specifying irrelevant words. We validate the interactive lexicon building interface by a user study and expert reviews. Quantitative evaluation shows that the bipolar lexicon generated with our methods is comparable to human-generated ones 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Kim, Seungyeon  |e verfasserin  |4 aut 
700 1 |a Lee, Jurim  |e verfasserin  |4 aut 
700 1 |a Choo, Jaegul  |e verfasserin  |4 aut 
700 1 |a Diakopoulos, Nicholas  |e verfasserin  |4 aut 
700 1 |a Elmqvist, Niklas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 24(2018), 1 vom: 07. Jan., Seite 361-370  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:1  |g day:07  |g month:01  |g pages:361-370 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2744478  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 1  |b 07  |c 01  |h 361-370