Highly Articulated Kinematic Structure Estimation Combining Motion and Skeleton Information

In this paper, we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view 2D image sequence. In contrast to prior motion-based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinema...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 9 vom: 07. Sept., Seite 2165-2179
1. Verfasser: Chang, Hyung Jin (VerfasserIn)
Weitere Verfasser: Demiris, Yiannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM27551692X
003 DE-627
005 20231225005845.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2748579  |2 doi 
028 5 2 |a pubmed24n0918.xml 
035 |a (DE-627)NLM27551692X 
035 |a (NLM)28880158 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Hyung Jin  |e verfasserin  |4 aut 
245 1 0 |a Highly Articulated Kinematic Structure Estimation Combining Motion and Skeleton Information 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.09.2019 
500 |a Date Revised 02.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view 2D image sequence. In contrast to prior motion-based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology via a successive iterative merging strategy. The iterative merge process is guided by a density weighted skeleton map which is generated from a novel object boundary generation method from sparse 2D feature points. Our main contributions can be summarised as follows: (i) An unsupervised complex articulated kinematic structure estimation method that combines motion segments with skeleton information. (ii) An iterative fine-to-coarse merging strategy for adaptive motion segmentation and structural topology embedding. (iii) A skeleton estimation method based on a novel silhouette boundary generation from sparse feature points using an adaptive model selection method. (iv) A new highly articulated object dataset with ground truth annotation. We have verified the effectiveness of our proposed method in terms of computational time and estimation accuracy through rigorous experiments with multiple datasets. Our experiments show that the proposed method outperforms state-of-the-art methods both quantitatively and qualitatively 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Demiris, Yiannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 9 vom: 07. Sept., Seite 2165-2179  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:9  |g day:07  |g month:09  |g pages:2165-2179 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2748579  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 9  |b 07  |c 09  |h 2165-2179