Directional Growth of DNA-Functionalized Nanorods to Enable Continuous, Site-Specific Metallization of DNA Origami Templates

This work examines the anisotropic electroless plating of DNA-functionalized gold nanorods attached to a DNA origami template to fabricate continuous metal structures of rectanglar, square, and T shapes. DNA origami, a versatile method for assembling a variety of 2- and 3-D nanostructures, is utiliz...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 39 vom: 03. Okt., Seite 10143-10152
1. Verfasser: Uprety, Bibek (VerfasserIn)
Weitere Verfasser: Jensen, John, Aryal, Basu R, Davis, Robert C, Woolley, Adam T, Harb, John N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Gold 7440-57-5 DNA 9007-49-2
Beschreibung
Zusammenfassung:This work examines the anisotropic electroless plating of DNA-functionalized gold nanorods attached to a DNA origami template to fabricate continuous metal structures of rectanglar, square, and T shapes. DNA origami, a versatile method for assembling a variety of 2- and 3-D nanostructures, is utilized to construct the DNA breadboard template used for this study. Staple strands on selective sites of the breadboard template are extended with an additional nucleotide sequence for the attachment of DNA-functionalized gold nanorods to the template via base pairing. The nanorod-seeded DNA templates are then introduced into an electroless gold plating solution to determine the extent to which the anisotropic growth of the nanorods is able to fill the gaps between seeds to create continuous structures. Our results show that the DNA-functionalized nanorods grow anisotropically during plating at a rate that is approximately 4 times faster in the length direction than in the width direction to effectively fill gaps of up to 11-13 nm in length. The feasibility of using this directional growth at specific sites to enable the fabrication of continuous metal nanostructures with diameters as thin as 10 nm is demonstrated and represents important progress toward the creation of devices and systems based on self-assembled biological templates
Beschreibung:Date Completed 25.01.2019
Date Revised 25.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01659