DehazeNet : An End-to-End System for Single Image Haze Removal

Single image haze removal is a challenging ill-posed problem. Existing methods use various constraints/priors to get plausible dehazing solutions. The key to achieve haze removal is to estimate a medium transmission map for an input hazy image. In this paper, we propose a trainable end-to-end system...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 11 vom: 05. Nov., Seite 5187-5198
1. Verfasser: Bolun Cai (VerfasserIn)
Weitere Verfasser: Xiangmin Xu, Kui Jia, Chunmei Qing, Dacheng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM275450708
003 DE-627
005 20231225005717.0
007 cr uuu---uuuuu
008 231225s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2598681  |2 doi 
028 5 2 |a pubmed24n0918.xml 
035 |a (DE-627)NLM275450708 
035 |a (NLM)28873058 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bolun Cai  |e verfasserin  |4 aut 
245 1 0 |a DehazeNet  |b An End-to-End System for Single Image Haze Removal 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.07.2018 
500 |a Date Revised 17.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Single image haze removal is a challenging ill-posed problem. Existing methods use various constraints/priors to get plausible dehazing solutions. The key to achieve haze removal is to estimate a medium transmission map for an input hazy image. In this paper, we propose a trainable end-to-end system called DehazeNet, for medium transmission estimation. DehazeNet takes a hazy image as input, and outputs its medium transmission map that is subsequently used to recover a haze-free image via atmospheric scattering model. DehazeNet adopts convolutional neural network-based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing. Specifically, the layers of Maxout units are used for feature extraction, which can generate almost all haze-relevant features. We also propose a novel nonlinear activation function in DehazeNet, called bilateral rectified linear unit, which is able to improve the quality of recovered haze-free image. We establish connections between the components of the proposed DehazeNet and those used in existing methods. Experiments on benchmark images show that DehazeNet achieves superior performance over existing methods, yet keeps efficient and easy to use 
650 4 |a Journal Article 
700 1 |a Xiangmin Xu  |e verfasserin  |4 aut 
700 1 |a Kui Jia  |e verfasserin  |4 aut 
700 1 |a Chunmei Qing  |e verfasserin  |4 aut 
700 1 |a Dacheng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 11 vom: 05. Nov., Seite 5187-5198  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:11  |g day:05  |g month:11  |g pages:5187-5198 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2598681  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 11  |b 05  |c 11  |h 5187-5198