Skeleton-Based Scagnostics

Scatterplot matrices (SPLOMs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics) approaches measure characteristics of scatterplots to automatically find potentially interesting plots, thereby making SPLOMs more scalable with the dimension count. While statist...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 24(2018), 1 vom: 30. Jan., Seite 542-552
1. Verfasser: Matute, Jose (VerfasserIn)
Weitere Verfasser: Telea, Alexandru C, Linsen, Lars
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Scatterplot matrices (SPLOMs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics) approaches measure characteristics of scatterplots to automatically find potentially interesting plots, thereby making SPLOMs more scalable with the dimension count. While statistical measures such as regression lines can capture orientation, and graph-theoretic scagnostics measures can capture shape, there is no scatterplot characterization measure that uses both descriptors. Based on well-known results in shape analysis, we propose a scagnostics approach that captures both scatterplot shape and orientation using skeletons (or medial axes). Our representation can handle complex spatial distributions, helps discovery of principal trends in a multiscale way, scales visually well with the number of samples, is robust to noise, and is automatic and fast to compute. We define skeleton-based similarity metrics for the visual exploration and analysis of SPLOMs. We perform a user study to measure the human perception of scatterplot similarity and compare the outcome to our results as well as to graph-based scagnostics and other visual quality metrics. Our skeleton-based metrics outperform previously defined measures both in terms of closeness to perceptually-based similarity and computation time efficiency
Beschreibung:Date Completed 19.12.2018
Date Revised 19.12.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2017.2744339