Clique Community Persistence : A Topological Visual Analysis Approach for Complex Networks

Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the computation of clique communities by considering persis...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 24(2018), 1 vom: 15. Jan., Seite 822-831
1. Verfasser: Rieck, Bastian (VerfasserIn)
Weitere Verfasser: Fugacci, Ulderico, Lukasczyk, Jonas, Leitte, Heike
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM275386716
003 DE-627
005 20250222055157.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2744321  |2 doi 
028 5 2 |a pubmed25n0917.xml 
035 |a (DE-627)NLM275386716 
035 |a (NLM)28866539 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rieck, Bastian  |e verfasserin  |4 aut 
245 1 0 |a Clique Community Persistence  |b A Topological Visual Analysis Approach for Complex Networks 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.12.2018 
500 |a Date Revised 19.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types 
650 4 |a Journal Article 
700 1 |a Fugacci, Ulderico  |e verfasserin  |4 aut 
700 1 |a Lukasczyk, Jonas  |e verfasserin  |4 aut 
700 1 |a Leitte, Heike  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 24(2018), 1 vom: 15. Jan., Seite 822-831  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:1  |g day:15  |g month:01  |g pages:822-831 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2744321  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 1  |b 15  |c 01  |h 822-831