StreetVizor : Visual Exploration of Human-Scale Urban Forms Based on Street Views
Urban forms at human-scale, i.e., urban environments that individuals can sense (e.g., sight, smell, and touch) in their daily lives, can provide unprecedented insights on a variety of applications, such as urban planning and environment auditing. The analysis of urban forms can help planners develo...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1998. - 24(2018), 1 vom: 15. Jan., Seite 1004-1013 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Urban forms at human-scale, i.e., urban environments that individuals can sense (e.g., sight, smell, and touch) in their daily lives, can provide unprecedented insights on a variety of applications, such as urban planning and environment auditing. The analysis of urban forms can help planners develop high-quality urban spaces through evidence-based design. However, such analysis is complex because of the involvement of spatial, multi-scale (i.e., city, region, and street), and multivariate (e.g., greenery and sky ratios) natures of urban forms. In addition, current methods either lack quantitative measurements or are limited to a small area. The primary contribution of this work is the design of StreetVizor, an interactive visual analytics system that helps planners leverage their domain knowledge in exploring human-scale urban forms based on street view images. Our system presents two-stage visual exploration: 1) an AOI Explorer for the visual comparison of spatial distributions and quantitative measurements in two areas-of-interest (AOIs) at city- and region-scales; 2) and a Street Explorer with a novel parallel coordinate plot for the exploration of the fine-grained details of the urban forms at the street-scale. We integrate visualization techniques with machine learning models to facilitate the detection of street view patterns. We illustrate the applicability of our approach with case studies on the real-world datasets of four cities, i.e., Hong Kong, Singapore, Greater London and New York City. Interviews with domain experts demonstrate the effectiveness of our system in facilitating various analytical tasks |
---|---|
Beschreibung: | Date Completed 15.04.2019 Date Revised 15.04.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2017.2744159 |