Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models

Distributions are often used to model uncertainty in many scientific datasets. To preserve the correlation among the spatially sampled grid locations in the dataset, various standard multivariate distribution models have been proposed in visualization literature. These models treat each grid locatio...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1998. - 24(2018), 1 vom: 15. Jan., Seite 934-943
Auteur principal: Hazarika, Subhashis (Auteur)
Autres auteurs: Biswas, Ayan, Shen, Han-Wei
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM275386554
003 DE-627
005 20250222055155.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2744099  |2 doi 
028 5 2 |a pubmed25n0917.xml 
035 |a (DE-627)NLM275386554 
035 |a (NLM)28866523 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hazarika, Subhashis  |e verfasserin  |4 aut 
245 1 0 |a Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.12.2018 
500 |a Date Revised 19.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Distributions are often used to model uncertainty in many scientific datasets. To preserve the correlation among the spatially sampled grid locations in the dataset, various standard multivariate distribution models have been proposed in visualization literature. These models treat each grid location as a univariate random variable which models the uncertainty at that location. Standard multivariate distributions (both parametric and nonparametric) assume that all the univariate marginals are of the same type/family of distribution. But in reality, different grid locations show different statistical behavior which may not be modeled best by the same type of distribution. In this paper, we propose a new multivariate uncertainty modeling strategy to address the needs of uncertainty modeling in scientific datasets. Our proposed method is based on a statistically sound multivariate technique called Copula, which makes it possible to separate the process of estimating the univariate marginals and the process of modeling dependency, unlike the standard multivariate distributions. The modeling flexibility offered by our proposed method makes it possible to design distribution fields which can have different types of distribution (Gaussian, Histogram, KDE etc.) at the grid locations, while maintaining the correlation structure at the same time. Depending on the results of various standard statistical tests, we can choose an optimal distribution representation at each location, resulting in a more cost efficient modeling without significantly sacrificing on the analysis quality. To demonstrate the efficacy of our proposed modeling strategy, we extract and visualize uncertain features like isocontours and vortices in various real world datasets. We also study various modeling criterion to help users in the task of univariate model selection 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Biswas, Ayan  |e verfasserin  |4 aut 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 24(2018), 1 vom: 15. Jan., Seite 934-943  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:1  |g day:15  |g month:01  |g pages:934-943 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2744099  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 1  |b 15  |c 01  |h 934-943