Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets

To address the problem of face recognition with image sets, we aim to capture the underlying data distribution in each set and thus facilitate more robust classification. To this end, we represent image set as the Gaussian mixture model (GMM) comprising a number of Gaussian components with prior pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 30. Jan., Seite 151-163
1. Verfasser: Wang, Wen (VerfasserIn)
Weitere Verfasser: Wang, Ruiping, Huang, Zhiwu, Shan, Shiguang, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Computational modeling Face Face recognition Gaussian distribution Kernel Manifolds Measurement
LEADER 01000naa a22002652 4500
001 NLM275386325
003 DE-627
005 20231225005547.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2746993  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275386325 
035 |a (NLM)28866497 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wen  |e verfasserin  |4 aut 
245 1 0 |a Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a To address the problem of face recognition with image sets, we aim to capture the underlying data distribution in each set and thus facilitate more robust classification. To this end, we represent image set as the Gaussian mixture model (GMM) comprising a number of Gaussian components with prior probabilities and seek to discriminate Gaussian components from different classes. Since in the light of information geometry, the Gaussians lie on a specific Riemannian manifold, this paper presents a method named discriminant analysis on Riemannian manifold of Gaussian distributions (DARG). We investigate several distance metrics between Gaussians and accordingly two discriminative learning frameworks are presented to meet the geometric and statistical characteristics of the specific manifold. The first framework derives a series of provably positive definite probabilistic kernels to embed the manifold to a high-dimensional Hilbert space, where conventional discriminant analysis methods developed in Euclidean space can be applied, and a weighted Kernel discriminant analysis is devised which learns discriminative representation of the Gaussian components in GMMs with their prior probabilities as sample weights. Alternatively, the other framework extends the classical graph embedding method to the manifold by utilizing the distance metrics between Gaussians to construct the adjacency graph, and hence the original manifold is embedded to a lower-dimensional and discriminative target manifold with the geometric structure preserved and the interclass separability maximized. The proposed method is evaluated by face identification and verification tasks on four most challenging and largest databases, YouTube Celebrities, COX, YouTube Face DB, and Point-and-Shoot Challenge, to demonstrate its superiority over the state-of-the-art.To address the problem of face recognition with image sets, we aim to capture the underlying data distribution in each set and thus facilitate more robust classification. To this end, we represent image set as the Gaussian mixture model (GMM) comprising a number of Gaussian components with prior probabilities and seek to discriminate Gaussian components from different classes. Since in the light of information geometry, the Gaussians lie on a specific Riemannian manifold, this paper presents a method named discriminant analysis on Riemannian manifold of Gaussian distributions (DARG). We investigate several distance metrics between Gaussians and accordingly two discriminative learning frameworks are presented to meet the geometric and statistical characteristics of the specific manifold. The first framework derives a series of provably positive definite probabilistic kernels to embed the manifold to a high-dimensional Hilbert space, where conventional discriminant analysis methods developed in Euclidean space can be applied, and a weighted Kernel discriminant analysis is devised which learns discriminative representation of the Gaussian components in GMMs with their prior probabilities as sample weights. Alternatively, the other framework extends the classical graph embedding method to the manifold by utilizing the distance metrics between Gaussians to construct the adjacency graph, and hence the original manifold is embedded to a lower-dimensional and discriminative target manifold with the geometric structure preserved and the interclass separability maximized. The proposed method is evaluated by face identification and verification tasks on four most challenging and largest databases, YouTube Celebrities, COX, YouTube Face DB, and Point-and-Shoot Challenge, to demonstrate its superiority over the state-of-the-art 
650 4 |a Journal Article 
650 4 |a Computational modeling 
650 4 |a Face 
650 4 |a Face recognition 
650 4 |a Gaussian distribution 
650 4 |a Kernel 
650 4 |a Manifolds 
650 4 |a Measurement 
700 1 |a Wang, Ruiping  |e verfasserin  |4 aut 
700 1 |a Huang, Zhiwu  |e verfasserin  |4 aut 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Chen, Xilin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 1 vom: 30. Jan., Seite 151-163  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:1  |g day:30  |g month:01  |g pages:151-163 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2746993  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 1  |b 30  |c 01  |h 151-163