Imagining Replications : Graphical Prediction & Discrete Visualizations Improve Recall & Estimation of Effect Uncertainty

People often have erroneous intuitions about the results of uncertain processes, such as scientific experiments. Many uncertainty visualizations assume considerable statistical knowledge, but have been shown to prompt erroneous conclusions even when users possess this knowledge. Active learning appr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 24(2018), 1 vom: 30. Jan., Seite 446-456
1. Verfasser: Hullman, Jessica (VerfasserIn)
Weitere Verfasser: Kay, Matthew, Kim, Yea-Seul, Shrestha, Samana
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM275386317
003 DE-627
005 20231225005547.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2743898  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275386317 
035 |a (NLM)28866501 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hullman, Jessica  |e verfasserin  |4 aut 
245 1 0 |a Imagining Replications  |b Graphical Prediction & Discrete Visualizations Improve Recall & Estimation of Effect Uncertainty 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.12.2018 
500 |a Date Revised 19.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a People often have erroneous intuitions about the results of uncertain processes, such as scientific experiments. Many uncertainty visualizations assume considerable statistical knowledge, but have been shown to prompt erroneous conclusions even when users possess this knowledge. Active learning approaches been shown to improve statistical reasoning, but are rarely applied in visualizing uncertainty in scientific reports. We present a controlled study to evaluate the impact of an interactive, graphical uncertainty prediction technique for communicating uncertainty in experiment results. Using our technique, users sketch their prediction of the uncertainty in experimental effects prior to viewing the true sampling distribution from an experiment. We find that having a user graphically predict the possible effects from experiment replications is an effective way to improve one's ability to make predictions about replications of new experiments. Additionally, visualizing uncertainty as a set of discrete outcomes, as opposed to a continuous probability distribution, can improve recall of a sampling distribution from a single experiment. Our work has implications for various applications where it is important to elicit peoples' estimates of probability distributions and to communicate uncertainty effectively 
650 4 |a Journal Article 
700 1 |a Kay, Matthew  |e verfasserin  |4 aut 
700 1 |a Kim, Yea-Seul  |e verfasserin  |4 aut 
700 1 |a Shrestha, Samana  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 24(2018), 1 vom: 30. Jan., Seite 446-456  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:1  |g day:30  |g month:01  |g pages:446-456 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2743898  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 1  |b 30  |c 01  |h 446-456