Objective Quality Assessment of Image Retargeting by Incorporating Fidelity Measures and Inconsistency Detection

The tremendous growth in mobile devices has resulted in huge generation and usage of digital images. Image quality assessment is thus an important issue for mobile media applications. In this paper, we focus on the quality evaluation of images generated by content-aware image retargeting, in which t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 30. Dez., Seite 5980-5993
1. Verfasser: Yichi Zhang (VerfasserIn)
Weitere Verfasser: King Ngi Ngan, Lin Ma, Hongliang Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM275386252
003 DE-627
005 20231225005547.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2746260  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275386252 
035 |a (NLM)28866493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yichi Zhang  |e verfasserin  |4 aut 
245 1 0 |a Objective Quality Assessment of Image Retargeting by Incorporating Fidelity Measures and Inconsistency Detection 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The tremendous growth in mobile devices has resulted in huge generation and usage of digital images. Image quality assessment is thus an important issue for mobile media applications. In this paper, we focus on the quality evaluation of images generated by content-aware image retargeting, in which the reference and the distorted images are of different sizes. Through retargeting, many types of deformation inconsistency lead to shape distortion, deformation artifacts, and content information loss, worsening its perceptual quality. The deformation inconsistency occurs on different levels of the retargeted images. Limited by the accuracy of the alignment between the original and retargeted images, previous methods only focus on pixel-level and patch-level fidelity analyses and fail to detect deformation inconsistency. In this paper, we improve the alignment algorithm and propose a three-level representation of the retargeting process. Based on the analysis of this three-level representation, both fidelity measures and inconsistency detection are combined to determine the final retargeting quality. The proposed algorithm is validated on the public data sets RetargetMe and CUHK. Experimental results demonstrate that inconsistency detection contributes to accurately assessing the image retargeting perceptual quality. This inspires us to investigate more about deformation inconsistency to formulate the objective quality of image retargeting 
650 4 |a Journal Article 
700 1 |a King Ngi Ngan  |e verfasserin  |4 aut 
700 1 |a Lin Ma  |e verfasserin  |4 aut 
700 1 |a Hongliang Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 12 vom: 30. Dez., Seite 5980-5993  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:12  |g day:30  |g month:12  |g pages:5980-5993 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2746260  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 12  |b 30  |c 12  |h 5980-5993