A Multi-Modal, Discriminative and Spatially Invariant CNN for RGB-D Object Labeling

While deep convolutional neural networks have shown a remarkable success in image classification, the problems of inter-class similarities, intra-class variances, the effective combination of multi-modal data, and the spatial variability in images of objects remain to be major challenges. To address...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 9 vom: 15. Sept., Seite 2051-2065
1. Verfasser: Asif, Umar (VerfasserIn)
Weitere Verfasser: Bennamoun, Mohammed, Sohel, Ferdous A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM275386155
003 DE-627
005 20250222055149.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2747134  |2 doi 
028 5 2 |a pubmed25n0917.xml 
035 |a (DE-627)NLM275386155 
035 |a (NLM)28866483 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Asif, Umar  |e verfasserin  |4 aut 
245 1 2 |a A Multi-Modal, Discriminative and Spatially Invariant CNN for RGB-D Object Labeling 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a While deep convolutional neural networks have shown a remarkable success in image classification, the problems of inter-class similarities, intra-class variances, the effective combination of multi-modal data, and the spatial variability in images of objects remain to be major challenges. To address these problems, this paper proposes a novel framework to learn a discriminative and spatially invariant classification model for object and indoor scene recognition using multi-modal RGB-D imagery. This is achieved through three postulates: 1) spatial invariance $-$ this is achieved by combining a spatial transformer network with a deep convolutional neural network to learn features which are invariant to spatial translations, rotations, and scale changes, 2) high discriminative capability $-$ this is achieved by introducing Fisher encoding within the CNN architecture to learn features which have small inter-class similarities and large intra-class compactness, and 3) multi-modal hierarchical fusion$-$ this is achieved through the regularization of semantic segmentation to a multi-modal CNN architecture, where class probabilities are estimated at different hierarchical levels (i.e., image- and pixel-levels), and fused into a Conditional Random Field (CRF)-based inference hypothesis, the optimization of which produces consistent class labels in RGB-D images. Extensive experimental evaluations on RGB-D object and scene datasets, and live video streams (acquired from Kinect) show that our framework produces superior object and scene classification results compared to the state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
700 1 |a Sohel, Ferdous A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 9 vom: 15. Sept., Seite 2051-2065  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:9  |g day:15  |g month:09  |g pages:2051-2065 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2747134  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 9  |b 15  |c 09  |h 2051-2065