Robust Light Field Depth Estimation Using Occlusion-Noise Aware Data Costs

Depth estimation is essential in many light field applications. Numerous algorithms have been developed using a range of light field properties. However, conventional data costs fail when handling noisy scenes in which occlusion is present. To address this problem, we introduce a light field depth e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 10 vom: 30. Okt., Seite 2484-2497
1. Verfasser: Williem (VerfasserIn)
Weitere Verfasser: Park, In Kyu, Lee, Kyoung Mu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Depth estimation is essential in many light field applications. Numerous algorithms have been developed using a range of light field properties. However, conventional data costs fail when handling noisy scenes in which occlusion is present. To address this problem, we introduce a light field depth estimation method that is more robust against occlusion and less sensitive to noise. Two novel data costs are proposed, which are measured using the angular patch and refocus image, respectively. The constrained angular entropy cost (CAE) reduces the effects of the dominant occluder and noise in the angular patch, resulting in a low cost. The constrained adaptive defocus cost (CAD) provides a low cost in the occlusion region, while also maintaining robustness against noise. Integrating the two data costs is shown to significantly improve the occlusion and noise invariant capability. Cost volume filtering and graph cut optimization are applied to improve the accuracy of the depth map. Our experimental results confirm the robustness of the proposed method and demonstrate its ability to produce high-quality depth maps from a range of scenes. The proposed method outperforms other state-of-the-art light field depth estimation methods in both qualitative and quantitative evaluations
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2017.2746858