Unsupervised Hierarchical Dynamic Parsing and Encoding for Action Recognition

Generally, the evolution of an action is not uniform across the video, but exhibits quite complex rhythms and non-stationary dynamics. To model such non-uniform temporal dynamics, in this paper, we describe a novel hierarchical dynamic parsing and encoding method to capture both the locally smooth d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 20. Dez., Seite 5784-5799
1. Verfasser: Bing Su (VerfasserIn)
Weitere Verfasser: Jiahuan Zhou, Xiaoqing Ding, Ying Wu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM275310833
003 DE-627
005 20231225005406.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2745212  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275310833 
035 |a (NLM)28858804 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bing Su  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Hierarchical Dynamic Parsing and Encoding for Action Recognition 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Generally, the evolution of an action is not uniform across the video, but exhibits quite complex rhythms and non-stationary dynamics. To model such non-uniform temporal dynamics, in this paper, we describe a novel hierarchical dynamic parsing and encoding method to capture both the locally smooth dynamics and globally drastic dynamic changes. It parses the dynamics of an action into different layers and encodes such multi-layer temporal information into a joint representation for action recognition. At the first layer, the action sequence is parsed in an unsupervised manner into several smooth-changing stages corresponding to different key poses or temporal structures by temporal clustering. The dynamics within each stage are encoded by mean-pooling or rank-pooling. At the second layer, the temporal information of the ordered dynamics extracted from the previous layer is encoded again by rank-pooling to form the overall representation. Extensive experiments on a gesture action data set (Chalearn Gesture) and three generic action data sets (Olympic Sports, Hollywood2, and UCF101) have demonstrated the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Jiahuan Zhou  |e verfasserin  |4 aut 
700 1 |a Xiaoqing Ding  |e verfasserin  |4 aut 
700 1 |a Ying Wu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 12 vom: 20. Dez., Seite 5784-5799  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:12  |g day:20  |g month:12  |g pages:5784-5799 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2745212  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 12  |b 20  |c 12  |h 5784-5799