Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval

We study the problem of fine-grained sketch-based image retrieval. By performing instance-level (rather than category-level) retrieval, it embodies a timely and practical application, particularly with the ubiquitous availability of touchscreens. Three factors contribute to the challenging nature of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 20. Dez., Seite 5908-5921
1. Verfasser: Ke Li (VerfasserIn)
Weitere Verfasser: Kaiyue Pang, Yi-Zhe Song, Hospedales, Timothy M, Tao Xiang, Honggang Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM275310752
003 DE-627
005 20231225005405.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2745106  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275310752 
035 |a (NLM)28858796 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ke Li  |e verfasserin  |4 aut 
245 1 0 |a Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We study the problem of fine-grained sketch-based image retrieval. By performing instance-level (rather than category-level) retrieval, it embodies a timely and practical application, particularly with the ubiquitous availability of touchscreens. Three factors contribute to the challenging nature of the problem: 1) free-hand sketches are inherently abstract and iconic, making visual comparisons with photos difficult; 2) sketches and photos are in two different visual domains, i.e., black and white lines versus color pixels; and 3) fine-grained distinctions are especially challenging when executed across domain and abstraction-level. To address these challenges, we propose to bridge the image-sketch gap both at the high level via parts and attributes, as well as at the low level via introducing a new domain alignment method. More specifically, first, we contribute a data set with 304 photos and 912 sketches, where each sketch and image is annotated with its semantic parts and associated part-level attributes. With the help of this data set, second, we investigate how strongly supervised deformable part-based models can be learned that subsequently enable automatic detection of part-level attributes, and provide pose-aligned sketch-image comparisons. To reduce the sketch-image gap when comparing low-level features, third, we also propose a novel method for instance-level domain-alignment that exploits both subspace and instance-level cues to better align the domains. Finally, fourth, these are combined in a matching framework integrating aligned low-level features, mid-level geometric structure, and high-level semantic attributes. Extensive experiments conducted on our new data set demonstrate effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Kaiyue Pang  |e verfasserin  |4 aut 
700 1 |a Yi-Zhe Song  |e verfasserin  |4 aut 
700 1 |a Hospedales, Timothy M  |e verfasserin  |4 aut 
700 1 |a Tao Xiang  |e verfasserin  |4 aut 
700 1 |a Honggang Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 12 vom: 20. Dez., Seite 5908-5921  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:12  |g day:20  |g month:12  |g pages:5908-5921 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2745106  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 12  |b 20  |c 12  |h 5908-5921