Foreground Segmentation with Tree-Structured Sparse RPCA

Background subtraction is a fundamental video analysis technique that consists of creation of a background model that allows distinguishing foreground pixels. We present a new method in which the image sequence is assumed to be made up of the sum of a low-rank background matrix and a dynamic tree-st...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 9 vom: 20. Sept., Seite 2273-2280
1. Verfasser: Ebadi, Salehe Erfanian (VerfasserIn)
Weitere Verfasser: Izquierdo, Ebroul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM275310663
003 DE-627
005 20231225005405.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2745573  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275310663 
035 |a (NLM)28858787 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ebadi, Salehe Erfanian  |e verfasserin  |4 aut 
245 1 0 |a Foreground Segmentation with Tree-Structured Sparse RPCA 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Background subtraction is a fundamental video analysis technique that consists of creation of a background model that allows distinguishing foreground pixels. We present a new method in which the image sequence is assumed to be made up of the sum of a low-rank background matrix and a dynamic tree-structured sparse matrix. The decomposition task is then solved using our approximated Robust Principal Component Analysis (ARPCA) method which is an extension to the RPCA that can handle camera motion and noise. Our model dynamically estimates the support of the foreground regions via a superpixel generation step, so that spatial coherence can be imposed on these regions. Unlike conventional smoothness constraints such as MRF, our method is able to obtain crisp and meaningful foreground regions, and in general, handles large dynamic background motion better. To reduce the dimensionality and the curse of scale that is persistent in the RPCA-based methods, we model the background via Column Subset Selection Problem, that reduces the order of complexity and hence decreases computation time. Comprehensive evaluation on four benchmark datasets demonstrate the effectiveness of our method in outperforming state-of-the-art alternatives 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Izquierdo, Ebroul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 9 vom: 20. Sept., Seite 2273-2280  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:9  |g day:20  |g month:09  |g pages:2273-2280 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2745573  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 9  |b 20  |c 09  |h 2273-2280