Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish

Copyright © 2017 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 119(2017) vom: 15. Okt., Seite 81-92
1. Verfasser: Cetner, M D (VerfasserIn)
Weitere Verfasser: Kalaji, H M, Goltsev, V, Aleksandrov, V, Kowalczyk, K, Borucki, W, Jajoo, A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Chlorophyll a fluorescence Light-harvesting complex N-deficiency OJIP-test PSII Photosynthesis Radish Light-Harvesting Protein Complexes Photosystem II Protein Complex mehr... Chlorophyll 1406-65-1 Nitrogen N762921K75 Chlorophyll A YF5Q9EJC8Y
Beschreibung
Zusammenfassung:Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nitrogen starvation has been stated to reduce chlorophyll a and accessory pigments, decrease photosynthetic efficiency, as well as modify chloroplast thylakoid membranes. However, the impact of N-deficiency on light-dependent reactions of photosynthesis has not been well understood. In this study, efficiency and structure of light-harvesting complex under N-deficiency conditions were investigated in two radish cultivars (Raphanus sativus var. sativus 'Fluo HF1' and 'Suntella F1'). Light-dependent reactions of photosynthesis were investigated by measuring in vivo chlorophyll a prompt fluorescence signal. Acquired data were utilised in two ways: by plotting fast induction curves and calculating OJIP-test biophysical parameters. Detailed analysis of difference curves as well as OJIP-test results showed that major disturbances were associated with photosystem II and its subunits, including decoupling of light-harvesting complexes, dysfunction of oxygen-evolving complex, and reaction centres inactivation. The maximum quantum yield of photosystem II primary photochemistry was severely restricted, causing an inhibition in electron transport through successive protein complexes in the thylakoid membrane. Structural changes were demonstrated by recording images using Transmission Electron Microscopy (TEM). TEM investigations showed intensive starch accumulation under N-deficiency. Rare thylakoid stacks distributed in tiny layers of stroma around grains and chloroplast periphery were observed in cells of N-deficient plants. The application of principal component analysis (PCA) on OJIP-test results allowed characterizing the dynamics of stress response and separating parameters according to their influence on plants stress response. 'Suntella F1' genotype was found to be more sensitive to nitrogen deficiency as compared to 'Fluo HF1' genotype
Beschreibung:Date Completed 26.12.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2017.08.016