Reflectance and Natural Illumination from Single-Material Specular Objects Using Deep Learning

In this paper, we present a method that estimates reflectance and illumination information from a single image depicting a single-material specular object from a given class under natural illumination. We follow a data-driven, learning-based approach trained on a very large dataset, but in contrast...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 8 vom: 15. Aug., Seite 1932-1947
1. Verfasser: Georgoulis, Stamatios (VerfasserIn)
Weitere Verfasser: Rematas, Konstantinos, Ritschel, Tobias, Gavves, Efstratios, Fritz, Mario, Van Gool, Luc, Tuytelaars, Tinne
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM275143082
003 DE-627
005 20231225005020.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2742999  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275143082 
035 |a (NLM)28841552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Georgoulis, Stamatios  |e verfasserin  |4 aut 
245 1 0 |a Reflectance and Natural Illumination from Single-Material Specular Objects Using Deep Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a method that estimates reflectance and illumination information from a single image depicting a single-material specular object from a given class under natural illumination. We follow a data-driven, learning-based approach trained on a very large dataset, but in contrast to earlier work we do not assume one or more components (shape, reflectance, or illumination) to be known. We propose a two-step approach, where we first estimate the object's reflectance map, and then further decompose it into reflectance and illumination. For the first step, we introduce a Convolutional Neural Network (CNN) that directly predicts a reflectance map from the input image itself, as well as an indirect scheme that uses additional supervision, first estimating surface orientation and afterwards inferring the reflectance map using a learning-based sparse data interpolation technique. For the second step, we suggest a CNN architecture to reconstruct both Phong reflectance parameters and high-resolution spherical illumination maps from the reflectance map. We also propose new datasets to train these CNNs. We demonstrate the effectiveness of our approach for both steps by extensive quantitative and qualitative evaluation in both synthetic and real data as well as through numerous applications, that show improvements over the state-of-the-art 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Rematas, Konstantinos  |e verfasserin  |4 aut 
700 1 |a Ritschel, Tobias  |e verfasserin  |4 aut 
700 1 |a Gavves, Efstratios  |e verfasserin  |4 aut 
700 1 |a Fritz, Mario  |e verfasserin  |4 aut 
700 1 |a Van Gool, Luc  |e verfasserin  |4 aut 
700 1 |a Tuytelaars, Tinne  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 8 vom: 15. Aug., Seite 1932-1947  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:8  |g day:15  |g month:08  |g pages:1932-1947 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2742999  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 8  |b 15  |c 08  |h 1932-1947