Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

OBJECTIVE: The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model

Bibliographische Detailangaben
Veröffentlicht in:Asian-Australasian journal of animal sciences. - 1998. - 31(2018), 5 vom: 20. Mai, Seite 636-642
1. Verfasser: Ben Zaabza, Hafedh (VerfasserIn)
Weitere Verfasser: Ben Gara, Abderrahmen, Rekik, Boulbaba
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Asian-Australasian journal of animal sciences
Schlagworte:Journal Article Genetic Correlations Heritabilities Legendre Polynomials Random Regression Tunisian Holsteins
LEADER 01000naa a22002652 4500
001 NLM274961970
003 DE-627
005 20231225004620.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.5713/ajas.17.0332  |2 doi 
028 5 2 |a pubmed24n0916.xml 
035 |a (DE-627)NLM274961970 
035 |a (NLM)28823122 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ben Zaabza, Hafedh  |e verfasserin  |4 aut 
245 1 0 |a Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a OBJECTIVE: The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model 
520 |a METHODS: A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler 
520 |a RESULTS: All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities 
520 |a CONCLUSION: These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins 
650 4 |a Journal Article 
650 4 |a Genetic Correlations 
650 4 |a Heritabilities 
650 4 |a Legendre Polynomials 
650 4 |a Random Regression 
650 4 |a Tunisian Holsteins 
700 1 |a Ben Gara, Abderrahmen  |e verfasserin  |4 aut 
700 1 |a Rekik, Boulbaba  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Asian-Australasian journal of animal sciences  |d 1998  |g 31(2018), 5 vom: 20. Mai, Seite 636-642  |w (DE-627)NLM098195883  |x 1011-2367  |7 nnns 
773 1 8 |g volume:31  |g year:2018  |g number:5  |g day:20  |g month:05  |g pages:636-642 
856 4 0 |u http://dx.doi.org/10.5713/ajas.17.0332  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2018  |e 5  |b 20  |c 05  |h 636-642