Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation

Copyright © 2017 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 263(2017) vom: 01. Okt., Seite 12-22
1. Verfasser: Furlan, Ana Laura (VerfasserIn)
Weitere Verfasser: Bianucci, Eliana, Castro, Stella, Dietz, Karl-Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Biological nitrogen fixation Drought stress Metabolomics Rehydration Tolerance Plant Proteins Water 059QF0KO0R gamma-Aminobutyric Acid mehr... 56-12-2 Carbon 7440-44-0 Glucosyltransferases EC 2.4.1.- sucrose synthase EC 2.4.1.13 Glutamate-Ammonia Ligase EC 6.3.1.2 Nitrogen N762921K75
LEADER 01000caa a22002652 4500
001 NLM274914808
003 DE-627
005 20250222040309.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2017.06.009  |2 doi 
028 5 2 |a pubmed25n0916.xml 
035 |a (DE-627)NLM274914808 
035 |a (NLM)28818367 
035 |a (PII)S0168-9452(17)30269-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Furlan, Ana Laura  |e verfasserin  |4 aut 
245 1 0 |a Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.01.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2017 Elsevier B.V. All rights reserved. 
520 |a Legumes belong to the most important crops worldwide. They increase soil fertility due their ability to establish symbiotic associations with soil microorganisms, known as rhizobia, capable of fixing nitrogen from the atmosphere. However, they are frequently exposed to abiotic stress conditions in particular drought. Such adverse conditions impair the biological nitrogen fixation (BNF) and depend largely on the legume. Therefore, two peanut cultivars with contrasting tolerance to drought, namely the more tolerant EC-98 and the sensitive Granoleico, were investigated to elucidate the relative contribution of BNF to the tolerance to drought. The tolerant cultivar EC-98 sustained growth and BNF similar to the control condition despite the reduced water potential and photosynthesis, suggesting the functioning of distinct metabolic pathways that contributed to enhance the tolerance. The biochemical and metabolomics approaches revealed that nodules from the tolerant cultivar accumulated trehalose, proline and gamma-aminobutyric acid (GABA), metabolites with known function in protecting against drought stress. The amide metabolism was severely affected in nodules from the sensitive cultivar Granoleico as revealed by the low content of asparagine and glutamine in the drought stressed plants. The sensitive cultivar upon rehydration was unable to re-establish a metabolism similar to well-watered plants. This was evidenced by the low level of metabolites and, transcripts and specific activities of enzymes from the carbon (sucrose synthase) and nitrogen (glutamine synthetase) metabolism which decreased below the values of control plants. Therefore, the increased content of metabolites with protective functions under drought stress likely is crucial for the full restoration upon rehydration. Smaller changes of drought stress-related metabolites in nodule are another trait that contributes to the effective control of BNF in the tolerant peanut cultivar (EC-98) 
650 4 |a Journal Article 
650 4 |a Biological nitrogen fixation 
650 4 |a Drought stress 
650 4 |a Metabolomics 
650 4 |a Rehydration 
650 4 |a Tolerance 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a gamma-Aminobutyric Acid  |2 NLM 
650 7 |a 56-12-2  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Glucosyltransferases  |2 NLM 
650 7 |a EC 2.4.1.-  |2 NLM 
650 7 |a sucrose synthase  |2 NLM 
650 7 |a EC 2.4.1.13  |2 NLM 
650 7 |a Glutamate-Ammonia Ligase  |2 NLM 
650 7 |a EC 6.3.1.2  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Bianucci, Eliana  |e verfasserin  |4 aut 
700 1 |a Castro, Stella  |e verfasserin  |4 aut 
700 1 |a Dietz, Karl-Josef  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 263(2017) vom: 01. Okt., Seite 12-22  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnns 
773 1 8 |g volume:263  |g year:2017  |g day:01  |g month:10  |g pages:12-22 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2017.06.009  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 263  |j 2017  |b 01  |c 10  |h 12-22