Differential effects of changes in spectral irradiance on photoacclimation, primary productivity and growth in Rhodomonas salina (Cryptophyceae) and Skeletonema costatum (Bacillariophyceae) in simulated blackwater environments

© 2017 Phycological Society of America.

Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology. - 1966. - 53(2017), 6 vom: 15. Dez., Seite 1241-1254
1. Verfasser: Lawrenz, Evelyn (VerfasserIn)
Weitere Verfasser: Richardson, Tammi L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of phycology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. CDOM chromatic adaptation colored dissolved organic matter phytoplankton spectral irradiance underwater light vertical mixing
Beschreibung
Zusammenfassung:© 2017 Phycological Society of America.
The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing-induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl-1 ) · h-1 . Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high-CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short-term 14 C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3-fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl-1 ) · h-1 . Thus, a lack of PFSL differentially impairs primarily CO2 -fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems
Beschreibung:Date Completed 25.06.2018
Date Revised 03.12.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1529-8817
DOI:10.1111/jpy.12578