Looking Beyond the Simple Scenarios : Combining Learners and Optimizers in 3D Temporal Tracking

3D object temporal trackers estimate the 3D rotation and 3D translation of a rigid object by propagating the transformation from one frame to the next. To confront this task, algorithms either learn the transformation between two consecutive frames or optimize an energy function to align the object...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 11 vom: 28. Nov., Seite 2399-2409
1. Verfasser: Tan, David Joseph (VerfasserIn)
Weitere Verfasser: Navab, Nassir, Tombari, Federico
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274830019
003 DE-627
005 20231225004331.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2734539  |2 doi 
028 5 2 |a pubmed24n0916.xml 
035 |a (DE-627)NLM274830019 
035 |a (NLM)28809695 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, David Joseph  |e verfasserin  |4 aut 
245 1 0 |a Looking Beyond the Simple Scenarios  |b Combining Learners and Optimizers in 3D Temporal Tracking 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D object temporal trackers estimate the 3D rotation and 3D translation of a rigid object by propagating the transformation from one frame to the next. To confront this task, algorithms either learn the transformation between two consecutive frames or optimize an energy function to align the object to the scene. The motivation behind our approach stems from a consideration on the nature of learners and optimizers. Throughout the evaluation of different types of objects and working conditions, we observe their complementary nature - on one hand, learners are more robust when undergoing challenging scenarios, while optimizers are prone to tracking failures due to the entrapment at local minima; on the other, optimizers can converge to a better accuracy and minimize jitter. Therefore, we propose to bridge the gap between learners and optimizers to attain a robust and accurate RGB-D temporal tracker that runs at approximately 2 ms per frame using one CPU core. Our work is highly suitable for Augmented Reality (AR), Mixed Reality (MR) and Virtual Reality (VR) applications due to its robustness, accuracy, efficiency and low latency. Aiming at stepping beyond the simple scenarios used by current systems, often constrained by having a single object in the absence of clutter, averting to touch the object to prevent close-range partial occlusion or selecting brightly colored objects to easily segment them individually, we demonstrate the capacity to handle challenging cases under clutter, partial occlusion and varying lighting conditions 
650 4 |a Journal Article 
700 1 |a Navab, Nassir  |e verfasserin  |4 aut 
700 1 |a Tombari, Federico  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 11 vom: 28. Nov., Seite 2399-2409  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:11  |g day:28  |g month:11  |g pages:2399-2409 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2734539  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 11  |b 28  |c 11  |h 2399-2409