Low-Rank Latent Pattern Approximation With Applications to Robust Image Classification

This paper develops a novel method to address the structural noise in samples for image classification. Recently, regression-related classification methods have shown promising results when facing the pixelwise noise. However, they become weak in coping with the structural noise due to ignoring of r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 11 vom: 28. Nov., Seite 5519-5530
1. Verfasser: Shuo Chen (VerfasserIn)
Weitere Verfasser: Jian Yang, Lei Luo, Yang Wei, Kaihua Zhang, Ying Tai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274829967
003 DE-627
005 20231225004331.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2738560  |2 doi 
028 5 2 |a pubmed24n0916.xml 
035 |a (DE-627)NLM274829967 
035 |a (NLM)28809683 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shuo Chen  |e verfasserin  |4 aut 
245 1 0 |a Low-Rank Latent Pattern Approximation With Applications to Robust Image Classification 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper develops a novel method to address the structural noise in samples for image classification. Recently, regression-related classification methods have shown promising results when facing the pixelwise noise. However, they become weak in coping with the structural noise due to ignoring of relationships between pixels of noise image. Meanwhile, most of them need to implement the iterative process for computing representation coefficients, which leads to the high time consumption. To overcome these problems, we exploit a latent pattern model called low-rank latent pattern approximation (LLPA) to reconstruct the test image having structural noise. The rank function is applied to characterize the structure of the reconstruction residual between test image and the corresponding latent pattern. Simultaneously, the error between the latent pattern and the reference image is constrained by Frobenius norm to prevent overfitting. LLPA involves a closed-form solution by the virtue of a singular value thresholding operator. The provided theoretic analysis demonstrates that LLPA indeed removes the structural noise during classification task. Additionally, LLPA is further extended to the form of matrix regression by connecting multiple training samples, and alternating direction of multipliers method with Gaussian back substitution algorithm is used to solve the extended LLPA. Experimental results on several popular data sets validate that the proposed methods are more robust to image classification with occlusion and illumination changes, as compared to some existing state-of-the-art reconstruction-based methods and one deep neural network-based method 
650 4 |a Journal Article 
700 1 |a Jian Yang  |e verfasserin  |4 aut 
700 1 |a Lei Luo  |e verfasserin  |4 aut 
700 1 |a Yang Wei  |e verfasserin  |4 aut 
700 1 |a Kaihua Zhang  |e verfasserin  |4 aut 
700 1 |a Ying Tai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 11 vom: 28. Nov., Seite 5519-5530  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:11  |g day:28  |g month:11  |g pages:5519-5530 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2738560  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 11  |b 28  |c 11  |h 5519-5530