Human Motion Segmentation via Robust Kernel Sparse Subspace Clustering

Studies on human motion have attracted a lot of attentions. Human motion capture data, which much more precisely records human motion than videos do, has been widely used in many areas. Motion segmentation is an indispensable step for many related applications, but current segmentation methods for m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 28. Jan., Seite 135-150
1. Verfasser: Xia, Guiyu (VerfasserIn)
Weitere Verfasser: Sun, Huaijiang, Feng, Lei, Zhang, Guoqing, Liu, Yazhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Computer vision Data models Kernel Manifolds Motion segmentation Robustness
LEADER 01000naa a22002652 4500
001 NLM274829932
003 DE-627
005 20231225004331.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2738562  |2 doi 
028 5 2 |a pubmed24n0916.xml 
035 |a (DE-627)NLM274829932 
035 |a (NLM)28809685 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xia, Guiyu  |e verfasserin  |4 aut 
245 1 0 |a Human Motion Segmentation via Robust Kernel Sparse Subspace Clustering 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Studies on human motion have attracted a lot of attentions. Human motion capture data, which much more precisely records human motion than videos do, has been widely used in many areas. Motion segmentation is an indispensable step for many related applications, but current segmentation methods for motion capture data do not effectively model some important characteristics of motion capture data, such as Riemannian manifold structure and containing non-Gaussian noise. In this paper, we convert the segmentation of motion capture data into a temporal subspace clustering problem. Under the framework of sparse subspace clustering, we propose to use the geodesic exponential kernel to model the Riemannian manifold structure, use correntropy to measure the reconstruction error, use the triangle constraint to guarantee temporal continuity in each cluster and use multi-view reconstruction to extract the relations between different joints. Therefore, exploiting some special characteristics of motion capture data, we propose a new segmentation method, which is robust to non-Gaussian noise, since correntropy is a localized similarity measure. We also develop an efficient optimization algorithm based on block coordinate descent method to solve the proposed model. Our optimization algorithm has a linear complexity while sparse subspace clustering is originally a quadratic problem. Extensive experiment results both on simulated noisy data set and real noisy data set demonstrate the advantage of the proposed method.Studies on human motion have attracted a lot of attentions. Human motion capture data, which much more precisely records human motion than videos do, has been widely used in many areas. Motion segmentation is an indispensable step for many related applications, but current segmentation methods for motion capture data do not effectively model some important characteristics of motion capture data, such as Riemannian manifold structure and containing non-Gaussian noise. In this paper, we convert the segmentation of motion capture data into a temporal subspace clustering problem. Under the framework of sparse subspace clustering, we propose to use the geodesic exponential kernel to model the Riemannian manifold structure, use correntropy to measure the reconstruction error, use the triangle constraint to guarantee temporal continuity in each cluster and use multi-view reconstruction to extract the relations between different joints. Therefore, exploiting some special characteristics of motion capture data, we propose a new segmentation method, which is robust to non-Gaussian noise, since correntropy is a localized similarity measure. We also develop an efficient optimization algorithm based on block coordinate descent method to solve the proposed model. Our optimization algorithm has a linear complexity while sparse subspace clustering is originally a quadratic problem. Extensive experiment results both on simulated noisy data set and real noisy data set demonstrate the advantage of the proposed method 
650 4 |a Journal Article 
650 4 |a Computer vision 
650 4 |a Data models 
650 4 |a Kernel 
650 4 |a Manifolds 
650 4 |a Motion segmentation 
650 4 |a Robustness 
700 1 |a Sun, Huaijiang  |e verfasserin  |4 aut 
700 1 |a Feng, Lei  |e verfasserin  |4 aut 
700 1 |a Zhang, Guoqing  |e verfasserin  |4 aut 
700 1 |a Liu, Yazhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 1 vom: 28. Jan., Seite 135-150  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:1  |g day:28  |g month:01  |g pages:135-150 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2738562  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 1  |b 28  |c 01  |h 135-150