Heterogeneous Face Attribute Estimation : A Deep Multi-Task Learning Approach

Face attribute estimation has many potential applications in video surveillance, face retrieval, and social media. While a number of methods have been proposed for face attribute estimation, most of them did not explicitly consider the attribute correlation and heterogeneity (e.g., ordinal versus no...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 11 vom: 28. Nov., Seite 2597-2609
1. Verfasser: Han, Hu (VerfasserIn)
Weitere Verfasser: Jain, Anil K, Wang, Fang, Shan, Shiguang, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM274829789
003 DE-627
005 20231225004331.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2738004  |2 doi 
028 5 2 |a pubmed24n0916.xml 
035 |a (DE-627)NLM274829789 
035 |a (NLM)28809673 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Hu  |e verfasserin  |4 aut 
245 1 0 |a Heterogeneous Face Attribute Estimation  |b A Deep Multi-Task Learning Approach 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.10.2019 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Face attribute estimation has many potential applications in video surveillance, face retrieval, and social media. While a number of methods have been proposed for face attribute estimation, most of them did not explicitly consider the attribute correlation and heterogeneity (e.g., ordinal versus nominal and holistic versus local) during feature representation learning. In this paper, we present a Deep Multi-Task Learning (DMTL) approach to jointly estimate multiple heterogeneous attributes from a single face image. In DMTL, we tackle attribute correlation and heterogeneity with convolutional neural networks (CNNs) consisting of shared feature learning for all the attributes, and category-specific feature learning for heterogeneous attributes. We also introduce an unconstrained face database (LFW+), an extension of public-domain LFW, with heterogeneous demographic attributes (age, gender, and race) obtained via crowdsourcing. Experimental results on benchmarks with multiple face attributes (MORPH II, LFW+, CelebA, LFWA, and FotW) show that the proposed approach has superior performance compared to state of the art. Finally, evaluations on a public-domain face database (LAP) with a single attribute show that the proposed approach has excellent generalization ability 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jain, Anil K  |e verfasserin  |4 aut 
700 1 |a Wang, Fang  |e verfasserin  |4 aut 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Chen, Xilin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 11 vom: 28. Nov., Seite 2597-2609  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:11  |g day:28  |g month:11  |g pages:2597-2609 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2738004  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 11  |b 28  |c 11  |h 2597-2609