The interplay of climate and land use change affects the distribution of EU bumblebees

© 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 1 vom: 04. Jan., Seite 101-116
1. Verfasser: Marshall, Leon (VerfasserIn)
Weitere Verfasser: Biesmeijer, Jacobus C, Rasmont, Pierre, Vereecken, Nicolas J, Dvorak, Libor, Fitzpatrick, Una, Francis, Frédéric, Neumayer, Johann, Ødegaard, Frode, Paukkunen, Juho P T, Pawlikowski, Tadeusz, Reemer, Menno, Roberts, Stuart P M, Straka, Jakub, Vray, Sarah, Dendoncker, Nicolas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't biodiversity loss dynamic future land use change scenarios pollinators projections species distribution models (SDMs) wild bees
LEADER 01000naa a22002652 4500
001 NLM274793318
003 DE-627
005 20231225004242.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13867  |2 doi 
028 5 2 |a pubmed24n0915.xml 
035 |a (DE-627)NLM274793318 
035 |a (NLM)28805965 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marshall, Leon  |e verfasserin  |4 aut 
245 1 4 |a The interplay of climate and land use change affects the distribution of EU bumblebees 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.10.2018 
500 |a Date Revised 10.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 
520 |a Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a biodiversity loss 
650 4 |a dynamic 
650 4 |a future 
650 4 |a land use change scenarios 
650 4 |a pollinators 
650 4 |a projections 
650 4 |a species distribution models (SDMs) 
650 4 |a wild bees 
700 1 |a Biesmeijer, Jacobus C  |e verfasserin  |4 aut 
700 1 |a Rasmont, Pierre  |e verfasserin  |4 aut 
700 1 |a Vereecken, Nicolas J  |e verfasserin  |4 aut 
700 1 |a Dvorak, Libor  |e verfasserin  |4 aut 
700 1 |a Fitzpatrick, Una  |e verfasserin  |4 aut 
700 1 |a Francis, Frédéric  |e verfasserin  |4 aut 
700 1 |a Neumayer, Johann  |e verfasserin  |4 aut 
700 1 |a Ødegaard, Frode  |e verfasserin  |4 aut 
700 1 |a Paukkunen, Juho P T  |e verfasserin  |4 aut 
700 1 |a Pawlikowski, Tadeusz  |e verfasserin  |4 aut 
700 1 |a Reemer, Menno  |e verfasserin  |4 aut 
700 1 |a Roberts, Stuart P M  |e verfasserin  |4 aut 
700 1 |a Straka, Jakub  |e verfasserin  |4 aut 
700 1 |a Vray, Sarah  |e verfasserin  |4 aut 
700 1 |a Dendoncker, Nicolas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 1 vom: 04. Jan., Seite 101-116  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:1  |g day:04  |g month:01  |g pages:101-116 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13867  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 1  |b 04  |c 01  |h 101-116