Gaseous Nanocarving-Mediated Carbon Framework with Spontaneous Metal Assembly for Structure-Tunable Metal/Carbon Nanofibers

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 38 vom: 25. Okt.
1. Verfasser: Nam, Dae-Hyun (VerfasserIn)
Weitere Verfasser: Lee, Sungwoo, Lee, Young-Joo, Jo, Jun-Hyun, Yoon, Euijoon, Yi, Kyung-Woo, Lee, Gun-Do, Joo, Young-Chang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article catalytic carbon combustion gaseous nanocarving hollow and porous carbon metal assembly selective oxidation
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vapor phase carbon (C)-reduction-based syntheses of C nanotubes and graphene, which are highly functional solid C nanomaterials, have received extensive attention in the field of materials science. This study suggests a revolutionary method for precisely controlling the C structures by oxidizing solid C nanomaterials into gaseous products in the opposite manner of the conventional approach. This gaseous nanocarving enables the modulation of inherent metal assembly in metal/C hybrid nanomaterials because of the promoted C oxidation at the metal/C interface, which produces inner pores inside C nanomaterials. This phenomenon is revealed by investigating the aspects of structure formation with selective C oxidation in the metal/C nanofibers, and density functional theory calculation. Interestingly, the tendency of C oxidation and calculated oxygen binding energy at the metal surface plane is coincident with the order Co > Ni > Cu > Pt. The customizable control of the structural factors of metal/C nanomaterials through thermodynamic-calculation-derived processing parameters is reported for the first time in this work. This approach can open a new class of gas-solid reaction-based synthetic routes that dramatically broaden the structure-design range of metal/C hybrid nanomaterials. It represents an advancement toward overcoming the limitations of intrinsic activities in various applications
Beschreibung:Date Completed 18.07.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201702958