|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM274733668 |
003 |
DE-627 |
005 |
20231225004127.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2017.274
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0915.xml
|
035 |
|
|
|a (DE-627)NLM274733668
|
035 |
|
|
|a (NLM)28799941
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Düppenbecker, B
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fluidized glass beads reduce fouling in a novel anaerobic membrane bioreactor
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.01.2019
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This study focuses on the use of fluidized glass beads as turbulence promoters in a laboratory-scale anaerobic membrane bioreactor treating municipal wastewater at 20 °C. The addition of fluidized glass beads into an external tubular ceramic membrane enabled the operation at low crossflow velocities of 0.053-0.073 m/s (mean fluxes between 5.5 and 9.7 L/(m2·h)) with runtimes >300 h. Glass beads with a diameter of 1.5 mm were more effective than smaller ones with a diameter of 0.8-1.2 mm. Increasing the bed voidage from 74 to 80% did not show any beneficial effect. As scanning electron microscope examination showed, the fluidized glass beads damaged the used membrane by abrasion. The overall total chemical oxygen demand (COD) removal was between 77 and 83%, although mean hydraulic retention times were only between 1.3 and 2.3 h. The production of total methane was increased about 30% in comparison to the bioreactor without membrane. The increased methane production is presumably attributed to biological conversion of rejected, dissolved and particulate organic matter. The total required electrical energy was predicted to be about 0.3 kWh/m3
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Waste Water
|2 NLM
|
650 |
|
7 |
|a Methane
|2 NLM
|
650 |
|
7 |
|a OP0UW79H66
|2 NLM
|
700 |
1 |
|
|a Kale, S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Engelhart, M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cornel, P
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 76(2017), 3-4 vom: 03. Aug., Seite 953-962
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:76
|g year:2017
|g number:3-4
|g day:03
|g month:08
|g pages:953-962
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2017.274
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 76
|j 2017
|e 3-4
|b 03
|c 08
|h 953-962
|