Unsupervised t-Distributed Video Hashing and Its Deep Hashing Extension

In this paper, a novel unsupervised hashing algorithm, referred to as t-USMVH, and its extension to unsupervised deep hashing, referred to as t-UDH, are proposed to support large-scale video-to-video retrieval. To improve robustness of the unsupervised learning, the t-USMVH combines multiple types o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 11 vom: 10. Nov., Seite 5531-5544
1. Verfasser: Yanbin Hao (VerfasserIn)
Weitere Verfasser: Tingting Mu, Goulermas, John Y, Jianguo Jiang, Richang Hong, Meng Wang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274701030
003 DE-627
005 20231225004043.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2737329  |2 doi 
028 5 2 |a pubmed24n0915.xml 
035 |a (DE-627)NLM274701030 
035 |a (NLM)28796619 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yanbin Hao  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised t-Distributed Video Hashing and Its Deep Hashing Extension 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a novel unsupervised hashing algorithm, referred to as t-USMVH, and its extension to unsupervised deep hashing, referred to as t-UDH, are proposed to support large-scale video-to-video retrieval. To improve robustness of the unsupervised learning, the t-USMVH combines multiple types of feature representations and effectively fuses them by examining a continuous relevance score based on a Gaussian estimation over pairwise distances, and also a discrete neighbor score based on the cardinality of reciprocal neighbors. To reduce sensitivity to scale changes for mapping objects that are far apart from each other, Student t-distribution is used to estimate the similarity between the relaxed hash code vectors for keyframes. This results in more accurate preservation of the desired unsupervised similarity structure in the hash code space. By adapting the corresponding optimization objective and constructing the hash mapping function via a deep neural network, we develop a robust unsupervised training strategy for a deep hashing network. The efficiency and effectiveness of the proposed methods are evaluated on two public video collections via comparisons against multiple classical and the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Tingting Mu  |e verfasserin  |4 aut 
700 1 |a Goulermas, John Y  |e verfasserin  |4 aut 
700 1 |a Jianguo Jiang  |e verfasserin  |4 aut 
700 1 |a Richang Hong  |e verfasserin  |4 aut 
700 1 |a Meng Wang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 11 vom: 10. Nov., Seite 5531-5544  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:11  |g day:10  |g month:11  |g pages:5531-5544 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2737329  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 11  |b 10  |c 11  |h 5531-5544