Learning-Based Shadow Recognition and Removal From Monochromatic Natural Images

This paper addresses the problem of recognizing and removing shadows from monochromatic natural images from a learning-based perspective. Without chromatic information, shadow recognition and removal are extremely challenging in this paper, mainly due to the missing of invariant color cues. Natural...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 10. Dez., Seite 5811-5824
1. Verfasser: Mingliang Xu (VerfasserIn)
Weitere Verfasser: Jiejie Zhu, Pei Lv, Bing Zhou, Tappen, Marshall F, Rongrong Ji
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274700999
003 DE-627
005 20231225004043.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2737321  |2 doi 
028 5 2 |a pubmed24n0915.xml 
035 |a (DE-627)NLM274700999 
035 |a (NLM)28796618 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mingliang Xu  |e verfasserin  |4 aut 
245 1 0 |a Learning-Based Shadow Recognition and Removal From Monochromatic Natural Images 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the problem of recognizing and removing shadows from monochromatic natural images from a learning-based perspective. Without chromatic information, shadow recognition and removal are extremely challenging in this paper, mainly due to the missing of invariant color cues. Natural scenes make this problem even harder due to the complex illumination condition and ambiguity from many near-black objects. In this paper, a learning-based shadow recognition and removal scheme is proposed to tackle the challenges above-mentioned. First, we propose to use both shadow-variant and invariant cues from illumination, texture, and odd order derivative characteristics to recognize shadows. Such features are used to train a classifier via boosting a decision tree and integrated into a conditional random field, which can enforce local consistency over pixel labels. Second, a Gaussian model is introduced to remove the recognized shadows from monochromatic natural scenes. The proposed scheme is evaluated using both qualitative and quantitative results based on a novel database of hand-labeled shadows, with comparisons to the existing state-of-the-art schemes. We show that the shadowed areas of a monochromatic image can be accurately identified using the proposed scheme, and high-quality shadow-free images can be precisely recovered after shadow removal 
650 4 |a Journal Article 
700 1 |a Jiejie Zhu  |e verfasserin  |4 aut 
700 1 |a Pei Lv  |e verfasserin  |4 aut 
700 1 |a Bing Zhou  |e verfasserin  |4 aut 
700 1 |a Tappen, Marshall F  |e verfasserin  |4 aut 
700 1 |a Rongrong Ji  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 12 vom: 10. Dez., Seite 5811-5824  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:12  |g day:10  |g month:12  |g pages:5811-5824 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2737321  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 12  |b 10  |c 12  |h 5811-5824