ELD-Net : An Efficient Deep Learning Architecture for Accurate Saliency Detection
Recent advances in saliency detection have utilized deep learning to obtain high-level features to detect salient regions in scenes. These advances have yielded results superior to those reported in past work, which involved the use of hand-crafted low-level features for saliency detection. In this...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 7 vom: 10. Juli, Seite 1599-1610 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Recent advances in saliency detection have utilized deep learning to obtain high-level features to detect salient regions in scenes. These advances have yielded results superior to those reported in past work, which involved the use of hand-crafted low-level features for saliency detection. In this paper, we propose ELD-Net, a unified deep learning framework for accurate and efficient saliency detection. We show that hand-crafted features can provide complementary information to enhance saliency detection that uses only high-level features. Our method uses both low-level and high-level features for saliency detection. High-level features are extracted using GoogLeNet, and low-level features evaluate the relative importance of a local region using its differences from other regions in an image. The two feature maps are independently encoded by the convolutional and the ReLU layers. The encoded low-level and high-level features are then combined by concatenation and convolution. Finally, a linear fully connected layer is used to evaluate the saliency of a queried region. A full resolution saliency map is obtained by querying the saliency of each local region of an image. Since the high-level features are encoded at low resolution, and the encoded high-level features can be reused for every query region, our ELD-Net is very fast. Our experiments show that our method outperforms state-of-the-art deep learning-based saliency detection methods |
---|---|
Beschreibung: | Date Completed 05.04.2019 Date Revised 05.04.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2017.2737631 |