ELD-Net : An Efficient Deep Learning Architecture for Accurate Saliency Detection

Recent advances in saliency detection have utilized deep learning to obtain high-level features to detect salient regions in scenes. These advances have yielded results superior to those reported in past work, which involved the use of hand-crafted low-level features for saliency detection. In this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 7 vom: 10. Juli, Seite 1599-1610
1. Verfasser: Lee, Gayoung (VerfasserIn)
Weitere Verfasser: Tai, Yu-Wing, Kim, Junmo, Gayoung Lee, Yu-Wing Tai, Junmo Kim
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Recent advances in saliency detection have utilized deep learning to obtain high-level features to detect salient regions in scenes. These advances have yielded results superior to those reported in past work, which involved the use of hand-crafted low-level features for saliency detection. In this paper, we propose ELD-Net, a unified deep learning framework for accurate and efficient saliency detection. We show that hand-crafted features can provide complementary information to enhance saliency detection that uses only high-level features. Our method uses both low-level and high-level features for saliency detection. High-level features are extracted using GoogLeNet, and low-level features evaluate the relative importance of a local region using its differences from other regions in an image. The two feature maps are independently encoded by the convolutional and the ReLU layers. The encoded low-level and high-level features are then combined by concatenation and convolution. Finally, a linear fully connected layer is used to evaluate the saliency of a queried region. A full resolution saliency map is obtained by querying the saliency of each local region of an image. Since the high-level features are encoded at low resolution, and the encoded high-level features can be reused for every query region, our ELD-Net is very fast. Our experiments show that our method outperforms state-of-the-art deep learning-based saliency detection methods
Beschreibung:Date Completed 05.04.2019
Date Revised 05.04.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2017.2737631