High-Quality Plane Wave Compounding Using Convolutional Neural Networks

Single plane wave (PW) imaging produces ultrasound images of poor quality at high frame rates (ultrafast). High-quality PW imaging usually relies on the coherent compounding of several successive steered emissions (typically more than ten), which in turn results in a decreased frame rate. We propose...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 64(2017), 10 vom: 09. Okt., Seite 1637-1639
1. Verfasser: Gasse, Maxime (VerfasserIn)
Weitere Verfasser: Millioz, Fabien, Roux, Emmanuel, Garcia, Damien, Liebgott, Herve, Friboulet, Denis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM274664798
003 DE-627
005 20231225003953.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2017.2736890  |2 doi 
028 5 2 |a pubmed24n0915.xml 
035 |a (DE-627)NLM274664798 
035 |a (NLM)28792894 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gasse, Maxime  |e verfasserin  |4 aut 
245 1 0 |a High-Quality Plane Wave Compounding Using Convolutional Neural Networks 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.11.2018 
500 |a Date Revised 26.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Single plane wave (PW) imaging produces ultrasound images of poor quality at high frame rates (ultrafast). High-quality PW imaging usually relies on the coherent compounding of several successive steered emissions (typically more than ten), which in turn results in a decreased frame rate. We propose a new strategy to reduce the number of emitted PWs by learning a compounding operation from data, i.e., by training a convolutional neural network to reconstruct high-quality images using a small number of transmissions. We present experimental evidence that this approach is promising, as we were able to produce high-quality images from only three PWs, competing in terms of contrast ratio and lateral resolution with the standard compounding of 31 PWs ( 10× speedup factor) 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Millioz, Fabien  |e verfasserin  |4 aut 
700 1 |a Roux, Emmanuel  |e verfasserin  |4 aut 
700 1 |a Garcia, Damien  |e verfasserin  |4 aut 
700 1 |a Liebgott, Herve  |e verfasserin  |4 aut 
700 1 |a Friboulet, Denis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 64(2017), 10 vom: 09. Okt., Seite 1637-1639  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:64  |g year:2017  |g number:10  |g day:09  |g month:10  |g pages:1637-1639 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2017.2736890  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 64  |j 2017  |e 10  |b 09  |c 10  |h 1637-1639